Skip to main content
Log in

Salinity-induced oxidative stress-mediated change in fatty acids composition of cyanobacterium Synechococcus sp. PCC7942

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The present study was undertaken to examine the salinity stress-induced physiological and biochemical alterations in the cyanobacterium Synechococcus sp. PCC 7942. Cyanobacterial cultures supplemented with different concentrations of NaCl were evaluated for growth, carbohydrate, total lipid, ROS generation, and stress biomarkers to evaluate the ROS-mediated lipid production in Synechococcus 7942. Salt concentration of 500 mM induced a five- and threefold increase in the production of carbohydrates and lipids, respectively. The fatty acids composition in terms of total quantity and oleic acid content of the investigated species was also improved as the salinity level increased from 0 to 500 mM NaCl. The data showed maximum MUFA production at 10 mM NaCl with dominance of palmitoleic acid (88.3%) and oleic acid (0.31%), whereas PUFA was found to be maximally produced at 250 mM NaCl with dominance of linoleic acid. Salt stress enhanced the accumulation of carbohydrate and total lipids and antioxidative enzymes, and modulates the fatty acids and hydrocarbon composition of cyanobacterium. Production of fatty acid and hydrocarbon under saline conditions indicates that salinity can be used as a factor to modulate the biochemical pathways of cyanobacteria toward efficient biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

CH:

Cyclic hydrocarbon

FAMEs:

Fatty acid methyl esters

GC/MS:

Gas chromatography/mass spectrometry

MDA:

Malondialdehyde

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

SFA:

Saturated fatty acid

SH:

Saturated hydrocarbon

SOD:

Superoxide dismutase

USH:

Unsaturated hydrocarbon

References

  • Ali S, Huang Z, Li H, Bashir MH, Ren S (2013) Antioxidant enzyme influences germination, stress tolerance, and virulence of Isaria fumosorosea. J Basic Microbiol 53:489–497

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125:1842–1853

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Tear ID (1975) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  Google Scholar 

  • Becker EW (1994) Microalgae biotechnology and microbiology. Cambridge University Press, Great Britain

    Google Scholar 

  • Bhaduri AM, Fulekar MH (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11:55–69

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1995) Assay of catalase and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chokshi K, Pancha I, Trivedi K, George B, Maurya R, Ghosh A, Mishra S (2015) Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour Technol 180:161–171

    Article  CAS  Google Scholar 

  • de Farias Silva CE, Bertucco A (2016) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem. https://doi.org/10.1016/j.procbio.2016.02.016

    Article  Google Scholar 

  • del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  CAS  Google Scholar 

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase, I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Gill PK, Sharma AD, Singh P, Bhullar SS (2002) Osmotic stress induced changes in germination, growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses. Plant Physiol 128:12–25

    Google Scholar 

  • Gomaa MA, Al-Haj L, Abed RMM (2016) Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products. J Appl Microbiol 121:919–931

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LM, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  CAS  Google Scholar 

  • He YY, Hader DP (2002) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N acetyl cysteine. J Photochem Photobiol 66:115–124

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Heidorn T, Camsund D, Huang HH, Lindberg P, Oliveira P, Stensjo K, Lindblad P (2011) Synthetic biology in cyanobacteria engineering and analyzing novel functions. Methods Enzymol 497:539–579

    Article  CAS  Google Scholar 

  • Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38:2577–2593

    Article  CAS  Google Scholar 

  • Jaffel K, Sai S, Bouraoui NK, Ammar RB, Legendre L, Lachaal M, Marzouk B (2011) Influence of salt stress on growth, lipid peroxidation and antioxidative enzyme activity in borage (Borago officinalis L.). Plant Biosyst 145:362–369

    Article  Google Scholar 

  • Kang JX, Wang J (2005) A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem 6:5

    Article  CAS  Google Scholar 

  • Kiran B, Pathak K, Kumar R, Deshmukh D, Rani N (2016) Influence of varying nitrogen levels on lipid accumulation in Chlorella sp. Int J Environ Sci Technol 13:1823–1832

    Article  CAS  Google Scholar 

  • Kirroliaa A, Bishnoia NR, Singh N (2011) Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. J Algal Biomass Utln 2:28–34

    Google Scholar 

  • Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58:123–137

    Article  CAS  Google Scholar 

  • Lu C, Zhang J (2000) Role of light in the response of PSII photochemistry to salt stress in the cyanobacterium Spirulina platensis. J Exp Bot 51:911–917

    Article  CAS  Google Scholar 

  • Ludwig M, Bryant DA (2012) Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and mixotrophic growth conditions. Front Microbiol 3:354

    CAS  Google Scholar 

  • Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56

    Article  CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Martínez-Roldán AJ, Perales-Vela HV, Cañizares-Villanueva RO, Torzillo G (2014) Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures. J Appl Phycol 26:115–121

    Article  CAS  Google Scholar 

  • Meury J (1988) Glycine-betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli. Arch Microbiol 149:232–239

    Article  CAS  Google Scholar 

  • Monshupanee T, Incharoensakdi A (2013) Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803. J Appl Microbiol 116:830–838

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Osundeko O, Davies H, Pittman JK (2013) Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass Bioenergy 56:284–294

    Article  CAS  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  Google Scholar 

  • Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154

    Article  CAS  Google Scholar 

  • Pancha I, Chokshi K, Maurya RK, Trivedi K, Patidar SK, Ghosh A, Mishra S (2015) Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 189:341–348

    Article  CAS  Google Scholar 

  • Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. J Biotechnol 5:147–162

    Article  CAS  Google Scholar 

  • Piuri M, Sanchez-Rivas C, Ruzal SM (2005) Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 98:84–95

    Article  CAS  Google Scholar 

  • Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490

    Article  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  CAS  Google Scholar 

  • Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2:136–149

    Article  Google Scholar 

  • Salama ES, Kim HC, Abou-Shanab RAI, Ji MK, Oh YK, Kim SH, Jeon BH (2013) Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst Eng 36:827–833

    Article  CAS  Google Scholar 

  • Scharlemann JP, Laurance WF (2008) Environmental science. How green are biofuels? Science 319:43–44

    Article  CAS  Google Scholar 

  • Song D, Fu J, Shi D (2008) Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol 24:341–348

    Article  CAS  Google Scholar 

  • Suutari M, Laakso S (1992) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  Google Scholar 

  • Takagi M, Karseno Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  Google Scholar 

  • Warr SRC, Reed RH, Chudek JA, Foster R, Stewart WDP (1985) Osmotic adjustment in Spirulina platensis. Planta 163:424–429

    Article  CAS  Google Scholar 

  • Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE 9:e91957

    Article  CAS  Google Scholar 

  • Zhu L, Zhang X, Ji L, Song X, Kuang C (2007) Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem 42:210–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Head, Department of Botany, Banaras Hindu University, Varanasi, India, for providing laboratory facilities. We thank Prof. Karl Forchhammer, Department of Organismic Interactions (Microbiology), Interfaculty Institute of Microbiology and Infection, Auf der Morgenstelle, 2872076, University of Tübingen, Germany, for providing Synechococcus sp. PCC 7942 strain. Two of us (Ekta Verma and Niveshika) are thankful to the UGC, New Delhi, for financial support in the form of JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Rupali Datta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1.

Growth of the cyanobacterium Synechococcus sp. in terms of dry weight (TIFF 642 kb)

Figure S2

DCF fluorescence-based G/R ratio of Synechococcus sp. obtained from fluorescence microscopic analysis under NaCl stress (TIFF 625 kb)

Figure S3.

GC/MS Chromatograms of control, 10, 50, 100, 250 and 500 mM NaCl-treated cyanobacterial cells (Fig. 1a, 1b, 1c, 1d, 1e, 1f, respectively) (EPS 3134 kb)

Supplementary material 4 (EPS 3137 kb)

Supplementary material 5 (EPS 3135 kb)

Supplementary material 6 (EPS 3130 kb)

Supplementary material 7 (EPS 3130 kb)

Supplementary material 8 (EPS 3133 kb)

Supplementary material 9 (DOCX 663 kb)

Supplementary material 10 (DOCX 580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, E., Singh, S., Niveshika et al. Salinity-induced oxidative stress-mediated change in fatty acids composition of cyanobacterium Synechococcus sp. PCC7942. Int. J. Environ. Sci. Technol. 16, 875–886 (2019). https://doi.org/10.1007/s13762-018-1720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1720-0

Keywords

Navigation