Skip to main content
Log in

Phytodesalination of saline water using Ipomoea aquatica, Alternanthera philoxeroides and Ludwigia adscendens

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A hydroponic experiment has been conducted for desalination of saline water by culturing Ipomoea aquatica, Alternanthera philoxeroides and Ludwigia adscendens at 0–7 dS m−1 salinity level. Water samples were collected at 15-day interval, and the plants were harvested after 45 days. They were separated into root, stem and leaf. EC value decreased in water with increasing time for all halophytes. Root and leaf contain higher amounts of sodium as compared with those of stem. The highest accumulation of sodium was found in the root of A. philoxeroides (145.63 g kg−1); however, I. aquatic has high phytodesalination capacity (130 kg Na+ ha−1) due to high productivity than A. philoxeroides (105 kg Na+ ha−1) and L. adscendens (80 kg Na+ ha−1). Bio-concentration factors (56.10–80.29) and translocation factor values (˃ 1) indicated that these halophytes were good sodium accumulator. Sodium adsorption ration values lied between 16.8–18 at 3 dS m−1 and 20–25.5 at 5 and 7 dS m−1 showed that these halophytes improved the water quality for irrigation. Anatomical variation from microscopic cellular images illustrated that spongy mesophyll cells along with sub-stomatal cells in leaf and xylem vessels along with vacuolar sequestration might be responsible for Na accumulation in the stem of these halophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelly C, Lachaâl M, Grignon C, Soltani A, Hajji M (1995) Association épisodique d’halophytes strictes et de glycophytes dans un écosystème hydromorphe salé en zone semi-aride. Agronomie 15(9–10):557–568

    Article  Google Scholar 

  • Abhilash PC, Vimal CP, Srivastava P, Rakesh PS, Chandran S, Singh N, Thomas AP (2009) Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater 170:791–797

    Article  CAS  Google Scholar 

  • AMTA (2007) Water desalination processes. Improving America’s waters through membrane treatment and desalting. American Membrane Technology Association 2409 SE Dixie Hwy, Stuart, Florida 34996

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63:5727–5740

    Article  CAS  Google Scholar 

  • Blumwald E, Poole RJ (1985) Na(+)/H(+) antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78:163–167

    Article  CAS  Google Scholar 

  • Carillo P, Grazia Annunziata M, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. InTech, Rijeka, pp 21–38

    Google Scholar 

  • Chakraborty SK (2013) Interactions of environmental variables determining the biodiversity of coastal-mangrove ecosystem of West Bengal, India. Development 25:27

    Google Scholar 

  • Dajic Z (1996) Studija halofitske zajednice Puccinellietum limosae (Rapcs.) Wend. (Ecological study of halophytic community Puccinellietum limosae (Rapcs.) Wend.) Doctoral dissertation, Faculty of Biology, University of Belgrade

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  Google Scholar 

  • Gupta SS, Nayek RN, Satpati SS (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    Article  CAS  Google Scholar 

  • Hajibagheri MA, Hall JL, Flowers TJ (1984) Stereological analysis of leaf cells of the halophyte Suaeda maritime L. dum. J Exp Bot 35(10):1547–1557

    Article  Google Scholar 

  • Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The Water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347:32 2nd Ed

    Google Scholar 

  • Islam MS, Ueno Y, Sikder MT, Kurasaki M (2013) Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (J.F. Gmel) S.F. blake as a hyperaccumulator. Int J Phytoremediation 15(10):1010–1021

    Article  CAS  Google Scholar 

  • Islam MS, Saito T, Kurasaki M (2015) Phytofiltration of arsenic and cadmium using Micranthemum umbrosum: phytotoxicity, uptake kinetics and mechanism. Ecotoxicol Environ Safe 112:193–200

    Article  CAS  Google Scholar 

  • Islam MS, Sikder MT, Kurasaki M (2017) Potential of Micranthemum umbrosum for phytofiltration of organic arsenic species from oxic water environment. Int J Environ Sci Technol 14(2):285–290

    Article  CAS  Google Scholar 

  • Jlassi A, Zorrig W, Khouni AE, Lakhdar A, Smaoui A, Abdelly C, Rabhi M (2013) Phytodesalination of a moderately-salt-affected soil by Sulla carnosa. Int J Phytoremediation 15:398–404

    Article  Google Scholar 

  • Lesch SM, Suarez DL (2009) A short note on calculating the adjusted SAR index. Am Soc Agric Biol Eng 52(2):493–496

    Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660

    Article  CAS  Google Scholar 

  • Rabhi M, Hafsi C, Lakhdar A, Hajji S, Barhoumi Z, Hamrouni MH, Abdelly C, Smaoui A (2009) Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under non-leaching conditions. Afr J Ecol 47:463–468

    Article  Google Scholar 

  • Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Abdelly C, Smaoui A (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101:6822–6828

    Article  CAS  Google Scholar 

  • Rabhi M, Atia A, Abdelly C, Smaoui A (2016) New parameters for a better evaluation of vegetative bioremediation, leaching, and phytodesalination. J Theor Biol 383:7–11

    Article  CAS  Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39(10):2661–2664

    Article  CAS  Google Scholar 

  • Robinson B, Kim N, Maechetti M, Moni C, Schroeter L, ven den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  Google Scholar 

  • Shelef O, Gross B, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976

    Article  CAS  Google Scholar 

  • Snyder KVW (2006) Removal of arsenic from drinking water by water hyacinths (Eichhornia crassipes). JUS SJWP 1:41–58

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology, 2nd edn. Willey, New York, pp 267–315

    Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

  • Zhao KF, Fan H, Song J, Sun MX, Wang BZ, Zhang SQ, Ungar IA (2005) Two Na+ and Cl hyperaccumulators of the Chenopodiaceae. J Integr Plant Biol 47(3):311–318

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Patuakhali Science and Technology University, Bangladesh (Grant No. PSTU/RTC-B/01/15/03), and International Foundation for Science (IFS), Sweden (Grant No. C/5867-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. S. Islam.

Additional information

Editorial responsibility: Gobinath Ravindran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.S., Hosen, M.M.L. & Uddin, M.N. Phytodesalination of saline water using Ipomoea aquatica, Alternanthera philoxeroides and Ludwigia adscendens. Int. J. Environ. Sci. Technol. 16, 965–972 (2019). https://doi.org/10.1007/s13762-018-1705-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1705-z

Keywords

Navigation