Ultrahigh photoactivity of ZnO nanoparticles for decomposition of high-concentration microcystin-LR in water environment

  • H. SudrajatEmail author
  • S. Babel
Original Paper


Use of highly photoactive materials is critical for applicability of photocatalysis in large-scale water treatment facilities. Unfortunately, in a real setting, the performance of existing photocatalysts is not as good as expected. Therefore, finding a truly photoactive material is of great importance. Herein, ZnO nanoparticles prepared through a simple solid-state route at moderate temperatures in the absence of oxygen are demonstrated to be a suitable option for environmental photocatalysis. Within only 8 min of UVA irradiation at pH 6, the degradation efficiency for 2 mg/L of microcystin-LR using 0.5 g/L of ZnO synthesized at 350 °C reaches as high as 97%. Hydroxyl radicals and valence band holes are found to be responsible for such a high degradation of microcystin-LR. The photocatalytic activity can also be maintained after six successive uses.


Metal oxide Solid-state synthesis Photocatalysis Advanced oxidation processes Water treatment 



This work is supported by Ton Duc Thang University, Vietnam.

Supplementary material

13762_2018_1690_MOESM1_ESM.docx (942 kb)
Supplementary material 1 (DOCX 942 kb)


  1. Akpan U, Hameed B (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529CrossRefGoogle Scholar
  2. Akyol A, Yatmaz H, Bayramoglu M (2004) Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl Catal B 54:19–24CrossRefGoogle Scholar
  3. Amirkhanlou S, Ketabchi M, Parvin N (2012) Nanocrystalline/nanoparticle ZnO synthesized by high energy ball milling process. Mater Lett 86:122–124CrossRefGoogle Scholar
  4. Antoniou MG, De La Cruz AA, Dionysiou DD (2005) Cyanotoxins: new generation of water contaminants. Am Soc Civil Eng 131:1239–1243Google Scholar
  5. Chong X, Li L, Yan X, Hu D, Li H, Wang Y (2012) Synthesis, characterization and room temperature photoluminescence properties of Al doped ZnO nanorods. Physica E 44:1399–1405CrossRefGoogle Scholar
  6. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776CrossRefGoogle Scholar
  7. Daneshvar N, Salari D, Khataee A (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A 162:317–322CrossRefGoogle Scholar
  8. Deng Y, Tang L, Zeng G, Feng C, Dong H, Wang J, Feng H, Liu Y, Zhou Y, Pang Y (2017) Plasmonic resonance excited dual Z-scheme BiVO4/Ag/Cu2O nanocomposite: synthesis and mechanism for enhanced photocatalytic performance in recalcitrant antibiotic degradation. Environ Sci Nano 4:1494–1511CrossRefGoogle Scholar
  9. Guo J, Li Y, Zhu S, Chen Z, Liu Q, Zhang D, Moon W-J, Song D-M (2012) Synthesis of WO3@ Graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Adv 2:1356–1363CrossRefGoogle Scholar
  10. Han J, Qiu W, Gao W (2010) Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater 178:115–122CrossRefGoogle Scholar
  11. Hlaing Oo W, McCluskey M, Lalonde A, Norton M (2005) Infrared spectroscopy of ZnO nanoparticles containing CO2 impurities. Appl Phys Lett 86:073111CrossRefGoogle Scholar
  12. Imanishi S, Kato H, Mizuno M, Tsuji K, Harada K-I (2005) Bacterial degradation of microcystins and nodularin. Chem Res Toxicol 18:591–598CrossRefGoogle Scholar
  13. Jacobs LC, Peralta-Zamora P, Campos FR, Pontarolo R (2013) Photocatalytic degradation of microcystin-LR in aqueous solutions. Chemosphere 90:1552–1557CrossRefGoogle Scholar
  14. Kansal S, Singh M, Sud D (2007) Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater 141:581–590CrossRefGoogle Scholar
  15. Kansole MM, Lin T-F (2016) Microcystin-LR Biodegradation by Bacillus sp.: reaction rates and possible genes involved in the degradation. Water 8:508CrossRefGoogle Scholar
  16. Khodja AA, Sehili T, Pilichowski J-F, Boule P (2001) Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A 141:231–239CrossRefGoogle Scholar
  17. Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2013) Photocatalytic degradation of resorcinol, an endocrine disrupter, by TiO2 and ZnO suspensions. Environ Technol 34:1097–1106CrossRefGoogle Scholar
  18. Li L, Gao N-Y, Deng Y, Yao J-J, Zhang K-J, Li H-J, Ou H-S, Guo J-W (2009) Experimental and model comparisons of H2O2 assisted UV photodegradation of Microcystin-LR in simulated drinking water. J Zhejiang Univ Sci A 10:1660–1669CrossRefGoogle Scholar
  19. Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125:4430–4431CrossRefGoogle Scholar
  20. Lizama C, Freer J, Baeza J, Mansilla HD (2002) Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions. Catal Today 76:235–246CrossRefGoogle Scholar
  21. Ma Q-B, Ye Z-Z, He H-P, Hu S-H, Wang J-R, Zhu L-P, Zhang Y-Z, Zhao B-H (2007) Structural, electrical, and optical properties of transparent conductive ZnO: Ga films prepared by DC reactive magnetron sputtering. J Cryst Growth 304:64–68CrossRefGoogle Scholar
  22. Nowak M, Kauch B, Szperlich P (2009) Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev Sci Instrum 80:046107CrossRefGoogle Scholar
  23. Park J-A, Jung S-M, Yi I-G, Choi J-W, Kim S-B, Lee S-H (2017) Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source. Chemosphere 177:15–23CrossRefGoogle Scholar
  24. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84CrossRefGoogle Scholar
  25. Prabhu YT, Rao KV, Kumar VSS, Kumari BS (2013) Synthesis of ZnO nanoparticles by a novel surfactant assisted amine combustion method. Adv Nanopart 2:45CrossRefGoogle Scholar
  26. Qiu P, Chen H, Xu C, Zhou N, Jiang F, Wang X, Fu Y (2015) Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. J Mater Chem A 3:24237–24244CrossRefGoogle Scholar
  27. Ristić M, Musić S, Ivanda M, Popović S (2005) Sol–gel synthesis and characterization of nanocrystalline ZnO powders. J Alloy Compd 397:L1–L4CrossRefGoogle Scholar
  28. Saison T, Chemin N, Chanéac C, Durupthy O, Mariey L, Maugé FO, Brezová V, Jolivet JP (2015) New insights into BiVO4 properties as visible light photocatalyst. J Phys Chem C 119:12967–12977CrossRefGoogle Scholar
  29. Sakthivel S, Neppolian B, Shankar M, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82CrossRefGoogle Scholar
  30. Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H (1995) Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol A 85:247–255CrossRefGoogle Scholar
  31. Sudrajat H, Babel S (2015) Photocatalytic degradation of methylene blue using visible light active N-doped ZnO. In: Adiguzel O (ed) Advanced materials research. Trans Tech Publications, Zurich, Switzerland, pp 299–302Google Scholar
  32. Sudrajat H, Babel S (2016a) Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G. Environ Sci Pollut Res 23:10177–10188CrossRefGoogle Scholar
  33. Sudrajat H, Babel S (2016b) A new, cost-effective solar photoactive system N-ZnO@ polyester fabric for degradation of recalcitrant compound in a continuous flow reactor. Mater Res Bull 83:369–378CrossRefGoogle Scholar
  34. Sudrajat H, Babel S (2016c) A novel visible light active N-doped ZnO for photocatalytic degradation of dyes. J Water Process Eng 16:309–318CrossRefGoogle Scholar
  35. Sudrajat H, Babel S (2016d) Rapid photocatalytic degradation of the recalcitrant dye amaranth by highly active N–WO3. Environ Chem Lett 14(2):243–249CrossRefGoogle Scholar
  36. Sudrajat H, Sujaridworakun P (2017) Low-temperature synthesis of δ-Bi2O3 hierarchical nanostructures composed of ultrathin nanosheets for efficient photocatalysis. Mater Des 130:501–511CrossRefGoogle Scholar
  37. Tang L, Wang J, Zeng G, Liu Y, Deng Y, Zhou Y, Tang J, Wang J, Guo Z (2016) Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. J Hazard Mater 306:295–304CrossRefGoogle Scholar
  38. Tani T, Mädler L, Pratsinis SE (2002) Homogeneous ZnO nanoparticles by flame spray pyrolysis. J Nanopart Res 4:337–343CrossRefGoogle Scholar
  39. Wang M, Lee KE, Hahn SH, Kim EJ, Kim S, Chung JS, Shin EW, Park C (2007) Optical and photoluminescent properties of sol–gel Al-doped ZnO thin films. Mater Lett 61:1118–1121CrossRefGoogle Scholar
  40. Wang H, Yuan X, Wu Y, Zeng G, Dong H, Chen X, Leng L, Wu Z, Peng L (2016a) In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl Catal B 186:19–29CrossRefGoogle Scholar
  41. Wang J, Tang L, Zeng G, Liu Y, Zhou Y, Deng Y, Wang J, Peng B (2016b) Plasmonic Bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis. ACS Sustain Chem Eng 5:1062–1072CrossRefGoogle Scholar
  42. Wang H, Yuan X, Wu Y, Zeng G, Tu W, Sheng C, Deng Y, Chen F, Chew JW (2017a) Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst deposited on perovskite-type ZnSn(OH)6 microparticle with facet-oriented polyhedron for improved visible-light-driven photocatalysis. Appl Catal B 209:543–553CrossRefGoogle Scholar
  43. Wang J, Tang L, Zeng G, Deng Y, Liu Y, Wang L, Zhou Y, Guo Z, Wang J, Zhang C (2017b) Atomic scale gC3N4/Bi WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl Catal B 209:285–294CrossRefGoogle Scholar
  44. Wu S, Lv J, Wang F, Duan N, Li Q, Wang Z (2017) Photocatalytic degradation of microcystin-LR with a nanostructured photocatalyst based on upconversion nanoparticles@ TiO2 composite under simulated solar lights. Sci Rep 7:14435CrossRefGoogle Scholar
  45. Yeber M, Rodríguez J, Freer J, Baeza J, Durán N, Mansilla HD (1999) Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere 39:1679–1688CrossRefGoogle Scholar
  46. Yoshida T, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Sekijima M, Tamura SI, Ueno Y (1997) Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat Toxins 5:91–95CrossRefGoogle Scholar
  47. Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596CrossRefGoogle Scholar
  48. Zhao C, Li D, Liu Y, Feng C, Zhang Z, Sugiura N, Yang Y (2015) Photocatalytic removal of microcystin-LR by advanced WO3-based nanoparticles under simulated solar light. Sci World J 720706:1–9Google Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Division of Computational Physics, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.School of Biochemical Engineering and Technology, Sirindhorn International Institute of TechnologyThammasat UniversityPathum ThaniThailand

Personalised recommendations