Skip to main content
Log in

Synthesis of novel surface-modified hematite nanoparticles for the removal of cobalt-60 radiocations from aqueous solution

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this study, novel surface-modified hematite nanoparticles (α-Fe2O3 NPs) were prepared at 250 °C using iron(III) chloride hexahydrate (FeCl3·6H2O) and oleic acid (C18H34O2) as raw materials for the removal of cobalt-60 radiocations from aqueous solutions by hydrothermal method. α-Fe2O3 NPs were characterized by X-ray diffraction, Fourier transform infrared (FT-IR), scanning electron microscope, transmission electron microscopy and Brunauer–Emmett–Teller. According to the results, the average diameter and length of the synthesized α-Fe2O3 nanorods varied in the range of 30–60 and 400–700 nm, respectively, when the specific surface area was 31.29 m2/g. In batch experiments, the effect of some variables such as pH (2–10), adsorbent weight (0.5, 1, 1.5, 2.5, 3.75 and 5 mg in 25 mL solution), initial concentration of cobalt-60 radiocations (1, 10, 25, 50, 75 and 100 mg/L), temperature (25, 30, 35, 40 and 45 °C) and contact time (1, 2, 3, 4, 5 and 6 h) was investigated at 120 rpm. The optimized condition for cobalt-60 adsorption onto α-Fe2O3 NPs was obtained in pH 6.5, initial radiocation concentration of 1 mg/L, contact time of 2 h and nano-α-Fe2O3 sorbent concentration of 20 mg/L. On the other hand, the results indicated that adsorption of cobalt-60 onto the synthesized nano-α-Fe2O3 well fitted the Ho model as linear pseudo-second-order kinetics. In contrast, analysis of equilibrium data showed that the Redlich–Peterson isotherm model was suitable for describing cobalt-60 adsorption onto α-Fe2O3 NPs and the maximum uptake capacity was about 142.86 mg/g at 25 ± 1 °C according to Langmuir isotherm results. Meanwhile, the actual maximum adsorption capacity was about 99 mg/g. Therefore, it can be concluded that the synthesized novel surface-modified α-Fe2O3 NPs is an environment-friendly and a promising adsorbent for the removal of cobalt-60 radiocations from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Inductivity Coupled Plasma.

  2. Dubinin-Radushkevich.

  3. Barrett-Joyner-Halenda.

  4. Nonlinear density functional theory.

  5. Horvath-Kawazoe.

  6. Saito-Foley.

  7. Denavit-Hartenberg.

References

  • Adegoke HI, AmooAdekola F, Fatoki OS, Ximba BJ (2014) Adsorption of Cr(VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies. Korean J Chem Eng 31(1):142–154

    Article  CAS  Google Scholar 

  • Almeida TP, Fay M, Zhu Y, Brown PD (2009) Process map for the hydrothermal synthesis of α-Fe2O3 nanorods. J Phys Chem C 113(43):18689–18698

    Article  CAS  Google Scholar 

  • Ashtiani MH, Azimi H (2016) Characterization of different types of bentonites and their applications as adsorbents of Co(II) and Ni(II). J Desalin Water Treat 57(37):17384–17399

    Article  Google Scholar 

  • Axel NC, Torben RJ, Christian RHB, Elaine DM (2007) Nano size crystals of goethite, α-FeOOH: synthesis and thermal transformation. J Solid State Chem 180(4):1431–1435

    Article  Google Scholar 

  • Belhachemi M, Addoun F (2011) Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci 1(3–4):111–117

    Article  CAS  Google Scholar 

  • Cataldo S, Cavallaro G, Gianguzza A, Lazzara G, Pettignano A (2013) Kinetic and equilibrium study for cadmium and copper removal from aqueous solutions by sorption onto mixed alginate/pectin gel beads. J Environ Chem Eng 1(4):1252–1260

    Article  CAS  Google Scholar 

  • Ceglowski M, Schroeder G (2015) Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions. Chem Eng J 263:402–411

    Article  CAS  Google Scholar 

  • Chen L, Lu WS, Zhou J, Wang X (2015) Removal of radiocobalt from aqueous solutions using titanate/graphene oxide composites. J Mol Liq 209:397–403

    Article  CAS  Google Scholar 

  • Correa FG, Flores NAF, Bulbulian S (2016) Co2+ ion adsorption behavior on plum stone carbon prepared by a solid-combustion process. J Desalin Water Treat 57(55):26472–26483

    Article  Google Scholar 

  • Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3(1):38–45

    Article  Google Scholar 

  • Deravanesiyan M, Beheshti M, Malekpour A (2015) Alumina nanoparticles immobilization onto the NaX zeolite and the removal of Cr(III) and Co(II) ions from aqueous solutions. J Ind Eng Chem 21:580–586

    Article  CAS  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. J Environ Sci Technol 37(18):4182–4189

    Article  CAS  Google Scholar 

  • Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, Jin Z, Wang J, Huang XJ, Liu J (2014) Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J Hazard Mater 270:1–10

    Article  CAS  Google Scholar 

  • Freitas JC, Branco RM, Lisboa IGO, Costa TP, Campos MGN, Júnior MJ, Marques RFC (2015) Magnetic nanoparticles obtained by homogeneous coprecipitation sonochemically assisted. J Mater Res 18(2):220–224

    Article  Google Scholar 

  • Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  • Gehan ESE, Neama GI, Refaat RA (2016) Preparation, characterization and application of superparamagnetic iron oxide nanoparticles modified with natural polymers for removal of 60Co-radionuclides from aqueous solution. J Radiochim Acta 105(2):141–159

    Google Scholar 

  • Gimbert F, Morin-crini N, Renault F, Badot PM, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater 157:34–46

    Article  CAS  Google Scholar 

  • Gunnarsson M (2002) Surface complexation at the iron oxide/water interface, experimental investigations and theoretical developments. Institutionen för kemi Göteborgs universitet Göteborg: Chalmers reproservice, pp 39–43

  • Hang C, Li Q, Gao S, Shang JK (2012) As(III) and As(V) adsorption by hydrous zirconium oxide nanoparticles synthesized by a hydrothermal process followed with heat treatment. J Ind Eng Chem Res 51(1):353–361

    Article  CAS  Google Scholar 

  • Hashemian S, Saffari H, Ragabion S (2015) Adsorption of cobalt(II) from aqueous solutions by Fe3O4/bentonite nanocomposite. J Water Air Soil Pollutant 226(2212):1–10

    Google Scholar 

  • Hidetoshi K, Yamato A, Masaharu S, Shunsuke U (1986) Adsorption of cobalt ions on hematite particles. J Nucl Sci Technol 23(10):926–927

    Article  Google Scholar 

  • Ho YS, McKey G (1999) Pseudo-second order model for sorption processes. J Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hooshyar Z, Rezanejade Bardajee G, Ghayeb Y (2013) Sonication enhanced removal of nickel and cobalt ions from polluted water using an iron based sorbent. J Chem 786954:1–5

    Article  Google Scholar 

  • Irannajad M, Haghighi HK (2017) Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite: equilibrium, thermodynamics and kinetics studies. J Clays Clay Miner 65(1):52–62

    Article  CAS  Google Scholar 

  • Jovic-Jovicic N, Ilic I, Marinovic S, Bankovic P, Jovanovic D, Dojcinovic B, Milutinovic-Nikolic A (2016) Kinetics of adsorption of nicotine by natural and acid-activate montmorillonite. In: 13th International conference on fundamental and applied aspects of physical chemistry 1, C-16-P, Belgrad, Serbia 26–30 September, pp 251–254

  • Lafferty BJ, Vogel MG, Sparks DL (2010) Arsenite oxidation by a poorly crystalline manganese-oxide stirred-flow experiments. J Environ Sci Technol 44(22):8460–8466

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Lemine OM, Ghiloufi I, Bououdina M, Khezami L, Ould M’hame M, Hassan AT (2014) Nanocrystalline Ni doped α-Fe2O3 for adsorption of metals from aqueous Solution. J Alloys Compd 588:592–595

    Article  CAS  Google Scholar 

  • Liu M, Chen C, Hu J, Wu X, Wang X (2011) Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal. J Phys Chem C 115(51):25234–25240

    Article  CAS  Google Scholar 

  • Nastaj J, Przewlocka A, Rajkowska-Mysliwiec M (2016) Biosorption of Ni(II), Pb(II) and Zn(II) on calcium beads: equilibrium, kinetic and mechanism studies. Pol J Chem Technol 18(3):81–87

    Article  CAS  Google Scholar 

  • Nirmala I (2014) Use of iron oxide magnetic nanosorbents for Cr(VI) removal from aqueous solutions: A review. J Eng Res Appl 4((10), Part-1):55–63

    Google Scholar 

  • Pal B, Sharon M (2000) Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: a study of photocatalytic properties. J Thin Solid Films 379(1–2):83–88

    Article  CAS  Google Scholar 

  • Park YJ, Lee YC, Shin WS, Choi SJ (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). J Chem Eng 162:685–695

    Article  CAS  Google Scholar 

  • Popa K, Palamaru MN, Iordan AR, Humelnicu D, Drochioiu G, Cecal A (2006) Laboratory analyses of 60Co2+, 65Zn2+ and 55+59Fe3+ radiocations uptake by Lemna minor. J Isotopes Environ Health Stud 42(1):87–95

    Article  CAS  Google Scholar 

  • Poursani AS, Nilchi A, Hassani AH, Shariat M, Nouri J (2015) A novel method for synthesis of nano-γ-Al2O3: study of adsorption behavior of chromium, nickel, cadmium and lead ions. Int J Environ Sci Technol 12(6):2003–2014

    Article  Google Scholar 

  • Poursani AS, Nilchi A, Hassani AH, Shariat M, Nouri J (2016) The synthesis of nano TiO2 and its use for removal of lead ions from aqueous solution. J Water Resour Prot 8(4):438–448

    Article  CAS  Google Scholar 

  • Pradhan GK, Parida KM (2011) Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. J Appl Mater Interfaces 3(2):317–323

    Article  CAS  Google Scholar 

  • Rajeshkannan R, Rajasimman M, Rajamohan N (2011) Decolourisation of malachite green using tamarind seed: optimisation, isotherm and kinetic studies. J Chem Ind Chem Eng Q 17(1):67–79

    Article  CAS  Google Scholar 

  • Rout S, Kumar A, Ravi PM, Tripathi RM (2015) Pseudo second order kinetic model for the sorption of U(VI) onto soil: a comparison of linear and non-linear methods. Int J Environ Sci 6(1):145–154

    CAS  Google Scholar 

  • Roy A, Bhattacharya J (2013) A binary and ternary adsorption study of wastewater Cd(II), Ni(II) and Co(II) by γ-Fe2O3 nanotubes. J Sep Purif Technol 115:172–179

    Article  CAS  Google Scholar 

  • Sampranpiboon P, Charnkeitkong P, Feng X (2014) Equilibrium isotherm models for adsorption of zinc(II) ion from aqueous solution on pulp waste. J WSEAS Trans Environ Dev 10:35–47

    Google Scholar 

  • Sasikumar P, Narasimhan SV, Velmurugan S (2013) Development of a modified ion exchange resin column for removal of gadolinium from the moderator system of PHWRs. J Sci Technol 48:1220–1225

    CAS  Google Scholar 

  • Sivakumar P, Palanisamy PN (2009) Adsorption studies of basic red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorum. Int J ChemTec Res 1(3):502–510

    CAS  Google Scholar 

  • Sobhanardakani S, Zandipak R (2015) Adsorption of Co(II) ions from aqueous solutions using NiFe2O4 nanoparticles. J Adv Environ Health Res 3(3):179–187

    CAS  Google Scholar 

  • Sounthararajah DP, Loganathan P, Kandasamy J, Vigneswaran S (2015) Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. J Hazard Mater 287:306–316

    Article  CAS  Google Scholar 

  • Srivastava V, Sharma YC, Sillanpää M (2015) Application of nano-magnesso ferrite (n-MgFe2O4) for the removal of Co2+ ions from synthetic wastewater: kinetic, equilibrium and thermodynamic studies. J Appl Surf Sci 338:42–54

    Article  CAS  Google Scholar 

  • Taman R, Ossman ME, Mansour MS, Farag HA (2015) Metal oxide nano-particles as an adsorbent for removal of heavy metals. J Adv Chem Eng. https://doi.org/10.4172/2090-4568.1000125

    Article  Google Scholar 

  • Tayyebi A, Outokesh M, Moradi S, Doram A (2015) Synthesis and characterization of ultrasound assisted ‘‘graphene oxide-magnetite” hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions. J Appl Surf Sci 353:350–362

    Article  CAS  Google Scholar 

  • Temkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochim URSS 12:327–356

    CAS  Google Scholar 

  • Todorović M, Milonjić SK, Čomor JJ, Gal IJ (1992) Adsorption of radioactive ions 137Cs+, 85Sr2+ and 60Co2+ on natural magnetite and hematite. J Sep Scie Technol 27(5):671–679

    Article  Google Scholar 

  • Tsirel’son VG, Antipin MY, Strel’tsov RP, Ozerov RP, Struchkov YT (1987) Calculation of electric field gradient at nuclei in crystals from X-ray diffraction data. J Doklady Akademii Nauk SSSR 65(5):1137–1141

    Google Scholar 

  • Uheida A, Salazar-Alvarez G, Bjorkman E, Yu Z, Muhammed M (2006) Fe3O4 and γ-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution. J Colloid Interface Sci 298:501–507

    Article  CAS  Google Scholar 

  • Üzüm Ç, Shahwan T, Eroğlu AE, Lieberwirth I, Scott TB, Hallam KR (2008) Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J 144(2):213–220

    Article  Google Scholar 

  • Vilvanathan S, Shanthakumar S (2015) Biosorption of Co(II) ions from aqueous solution using Chrysanthemum indicum: kinetics, equilibrium and thermodynamics. J Process Saf Environ Prot 96:98–110

    Article  CAS  Google Scholar 

  • Wei W, Quanguo H, Changzhong J (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  Google Scholar 

  • Xing M, Wang J (2016) Nanoscaled zero valent iron/graphene composite as an efficient adsorbent for Co(II) removal from aqueous solution. J Colloid Interface Sci 474:119–128

    Article  CAS  Google Scholar 

  • Xu XN, Wolfus Y, Shaulov A, Yeshurun Y, Felner I, Nowik I, Koltypin Y, Gedanken A (2002) Annealing study of Fe2O3 nanoparticles: magnetic size effects and phase transformations. J Appl Phys 91(7):4611–4616

    Article  CAS  Google Scholar 

  • Yin Y, Hu J, Wang J (2017) Removal of Sr2+, Co2+, and Cs+ from aqueous solution by immobilized Saccharomyces cerevisiae with magnetic chitosan beads. J Environ Prog Sustain Energy. https://doi.org/10.1002/ep.12531

    Article  Google Scholar 

  • Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Competitive adsorption of strontium and cobalt onto tin antimonite. Chem Eng J 285:679–689

    Article  CAS  Google Scholar 

  • Zhao GX, Li JX, Ren XM, Chen CL, Wang XK (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. J Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  • Zhu Y, Hu J, Wang J (2014) Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. J Prog Nucl Energy 71:172–178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the authorities of Nuclear Science and Technology Research Institute of Iran for equipping the laboratory, where this research work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Hassani.

Additional information

Editorial responsibility: M. Abbaspour

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemzadeh, M., Nilchi, A., Hassani, A.H. et al. Synthesis of novel surface-modified hematite nanoparticles for the removal of cobalt-60 radiocations from aqueous solution. Int. J. Environ. Sci. Technol. 16, 775–792 (2019). https://doi.org/10.1007/s13762-018-1656-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1656-4

Keywords

Navigation