Modeling indoor air carbon dioxide concentration using artificial neural network

  • B. KhazaeiEmail author
  • A. Shiehbeigi
  • A. R. Haji Molla Ali Kani
Original Paper


Many studies have been conducted on estimating the number of occupants in a building to set the right ventilation rate in order to maintain standard indoor air quality. However, few have focused on predicting carbon dioxide itself based on the room’s available parameters, such as temperature and humidity. This study was aimed at predicting indoor air carbon dioxide concentration in a room using a multilayer perceptron neural network with relative humidity and temperature as inputs. The neural network is a popular data-driven method to provide geometry-independent prediction algorithms. In this study, the neural network was trained in three different ways with the complete, partial, and zero real carbon dioxide concentrations available in the learning process. The sensitivity and specificity analyses were conducted on the output. The most accurate model, based on the calculated mean-square-error method, was five-steps-ahead prediction model with less than 17 PPM difference on average to actual CO2 concentration in the room. Results were also promising for the open-loop model. Carbon dioxide predictions can be used in maintaining indoor air quality by improving ventilation control in buildings.


Carbon dioxide Data-driven Indoor air quality Neural network Ventilation 



This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.


  1. Arens E, Zhang H, Hoyt T, Kaam S, Bauman F, Zhai Y, Paliaga G, Stein J, Seidl R, Tully B, Rimmer J, Toftum J (2015) Effects of diffuser airflow minima on occupant comfort, air mixing, and building energy use (RP-1515). Sci Technol Built Environ 21:1075–1090. CrossRefGoogle Scholar
  2. ASHRAE (2007) Standard 62-2007 (2007). Ventilation for acceptable indoor air quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., AtlantaGoogle Scholar
  3. Calì D, Matthes P, Huchtemann K, Streblow R, Müller D (2015) CO2 based occupancy detection algorithm: experimental analysis and validation for office and residential buildings. Build Environ 86:39–49. CrossRefGoogle Scholar
  4. Candanedo LM, Feldheim V (2016) Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models. Energy Build 112:28–39. CrossRefGoogle Scholar
  5. Collotta M, Messineo A, Nicolosi G, Pau G (2014) A dynamic fuzzy controller to meet thermal comfort by using neural network forecasted parameters as the input. Energies 7:4727–4756CrossRefGoogle Scholar
  6. Ebadat A, Bottegal G, Varagnolo D, Wahlberg B, Johansson KH (2013). Estimation of building occupancy levels through environmental signals deconvolution. In: Proceedings of the 5th ACM workshop on embedded systems for energy-efficient buildings. ACM, pp 1–8Google Scholar
  7. Ebadat A, Bottegal G, Varagnolo D, Wahlberg B, Hjalmarsson H, Johansson KH (2015) Blind identification strategies for room occupancy estimation. In: Control conference (ECC), 2015 European. IEEE, pp 1315–1320Google Scholar
  8. Fan Y, Kameishi K, Onishi S, Ito K (2014) Field-based study on the energy-saving effects of CO2 demand controlled ventilation in an office with application of energy recovery ventilators. Energy Build 68:412–422CrossRefGoogle Scholar
  9. Fisk WJ, De Almeida AT (1998) Sensor-based demand-controlled ventilation: a review. Energy Build 29:35–45. CrossRefGoogle Scholar
  10. Grace S, Mohan Lal D, Sharmeela C (2004) Demand controlled systems with fuzzy controllers to maintain indoor air quality—an energy saving approach. Int J Vent 3:79–86CrossRefGoogle Scholar
  11. Gruber M, Trüschel A, Dalenbäck J-O (2014) CO2 sensors for occupancy estimations: potential in building automation applications. Energy Build 84:548–556CrossRefGoogle Scholar
  12. Haykin SS (2009) Neural networks and learning machines. Pearson Education, Upper Saddle RiverGoogle Scholar
  13. Hoyt T, Arens E, Zhang H (2015) Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Interact Hum Build Environ 88:89–96. CrossRefGoogle Scholar
  14. Jurelionis A, Isevičius E (2008) CFD predictions of indoor air movement induced by cold window surfaces. J Civ Eng Manag 14:29–38. CrossRefGoogle Scholar
  15. Kamendere E, Zogla G, Kamenders A, Ikaunieks J, Rochas C (2015) Analysis of mechanical ventilation system with heat recovery in renovated apartment buildings. Int Sci Conf Environ Clim Technol 72:27–33. Google Scholar
  16. Laverge J, Van Den Bossche N, Heijmans N, Janssens A (2011) Energy saving potential and repercussions on indoor air quality of demand controlled residential ventilation strategies. Build Environ 46:1497–1503CrossRefGoogle Scholar
  17. Liddament M, Orme M (1998) Energy and ventilation. Appl Therm Eng 18:1101–1109CrossRefGoogle Scholar
  18. Lu T, Lü X, Viljanen M (2011) A novel and dynamic demand-controlled ventilation strategy for CO2 control and energy saving in buildings. Energy Build 43:2499–2508CrossRefGoogle Scholar
  19. Moschandreas DJ, Sofuoglu SC (2004) The indoor environmental index and its relationship with symptoms of office building occupants. J Air Waste Manag Assoc 54:1440–1451. CrossRefGoogle Scholar
  20. Panagopoulos IK, Karayannis AN, Kassomenos P, Aravossis K (2011) A CFD simulation study of VOC and formaldehyde indoor air pollution dispersion in an apartment as part of an indoor pollution management plan. Aerosol Air Qual Res 11:758–762CrossRefGoogle Scholar
  21. Pepper DW, Carrington D (2009) Modeling indoor air pollution. Imperial College Press, LondonCrossRefGoogle Scholar
  22. Ramponi R, Blocken B (2012) CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Build Environ 53:34–48. CrossRefGoogle Scholar
  23. Schiavon S, Melikov AK, Sekhar C (2010) Energy analysis of the personalized ventilation system in hot and humid climates. Energy Build 42:699–707. CrossRefGoogle Scholar
  24. Seppänen O, Fisk W, Mendell M (1999) Association of ventilation rates and CO2 concentrations with health andother responses in commercial and institutional buildings. Indoor Air 9:226–252CrossRefGoogle Scholar
  25. Shan K, Sun Y, Wang S, Yan C (2012) Development and In-situ validation of a multi-zone demand-controlled ventilation strategy using a limited number of sensors. Build Environ 57:28–37. CrossRefGoogle Scholar
  26. Shendell DG, Prill R, Fisk WJ, Apte MG, Blake D, Faulkner D (2004) Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air 14:333–341CrossRefGoogle Scholar
  27. Skön J, Johansson M, Raatikainen M, Leiviskä K, Kolehmainen M (2012) Modelling indoor air carbon dioxide (CO2) concentration using neural network. Presented at the International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, World Academy of Science, Engineering and Technology, pp 37–41Google Scholar
  28. Sofuoglu SC (2008) Application of artificial neural networks to predict prevalence of building-related symptoms in office buildings. Build Environ 43:1121–1126CrossRefGoogle Scholar
  29. Sun Z, Wang S, Ma Z (2011) In-situ implementation and validation of a CO2-based adaptive demand-controlled ventilation strategy in a multi-zone office building. Build Environ 46:124–133CrossRefGoogle Scholar
  30. Yang L, Ye M, He B-J (2014) CFD simulation research on residential indoor air quality. Sci Total Environ 472:1137–1144. CrossRefGoogle Scholar
  31. Zhong K, Kang Y (2009) Applicability of air-to-air heat recovery ventilators in China. Appl Therm Eng 29:830–840. CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  • B. Khazaei
    • 1
    Email author
  • A. Shiehbeigi
    • 1
  • A. R. Haji Molla Ali Kani
    • 1
  1. 1.Department of Energy Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations