Skip to main content
Log in

Improved visible photocatalytic activity of TiO2 nanoparticles to use in submerged membrane photoreactor for organic pollutant degradation

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this study, photocatalytic activity of TiO2 nanoparticles under visible light was improved and the modified photocatalysts were used in a pilot-scale continuous submerged photocatalytic membrane reactor (SPMR) for decolorization of Reactive Orange 29 (RO29) under visible light irradiation. The Taguchi method was used to optimize the activation of TiO2 nanoparticles. Effect of the activation precursors (urea, thiourea, ammonium thiocyanate and sulfanilic acid), TiO2: precursors w/w ratio (1:1–1:6), activation time (1–7 h) and activation temperature (350–500 °C) on the visible photocatalytic efficiency of the nanoparticles was investigated to achieve maximum decolorization efficiency. X-ray diffraction, scanning electron microscopy, Fourier transform infrared and diffuse reflection spectroscopy analysis were used to characterize the photocatalysts. The results presented that the doping source and the doping source:TiO2 ratio had the most and the lowest effect on the TiO2 activation process, respectively. When urea was applied as an activation precursor with mass ratio of 6:1 to TiO2 at 450 °C for 5 h, the decolorization efficiency of 84.2% was obtained in a continuous SPMR system. The RO29 degradation intermediates were analyzed by gas chromatography coupled with mass spectroscopy technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agarwal S, Tyagi I, Gupta VK, Fakhri A, Shahidi S (2017) Sonocatalytic, sonophotocatalytic and photocatalytic degradation of morphine using molybdenum trioxide and molybdenum disulfide nanoparticles photocatalyst. J Mol Liq 225:95–100

    Article  CAS  Google Scholar 

  • Arefi-Oskoui S, Vatanpour V, Khataee A (2016) Development of a novel high-flux PVDF-based ultrafiltration membrane by embedding Mg–Al nanolayered double hydroxide. J Ind Eng Chem 41:23–32

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  • Bao N, Niu JJ, Li Y, Wu GL, Yu XH (2013) Low-temperature hydrothermal synthesis of N-doped TiO2 from small-molecule amine systems and their photocatalytic activity. Environ Technol 34:2939–2949

    Article  CAS  Google Scholar 

  • Beydoun D, Amal R, Low GK-C, McEnvoy S (2000) Novel photocatalyst: titanium coated magnetic-activity and photodissolution. J Phys Chem B 104:4387–4396

    Article  CAS  Google Scholar 

  • Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJ (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92:178–190

    Article  CAS  Google Scholar 

  • Bowering N, Croston D, Harrison PG, Walker GS (2007) Silver modified Degussa P25 for the photocatalytic removal of nitric oxide. Int J Photoenergy 2007:1–8

    Article  CAS  Google Scholar 

  • Butterfield M, Christensen PA, Curtis TP, Gunlazaurd J (1997) Water disinfection using an immobilized titanium dioxide film in a photochemical reactor with electric field enhancement. Water Res 31:675–677

    Article  CAS  Google Scholar 

  • Cheng X, Yu X, Xing Z (2013) Enhanced photoelectric property and visible activity of nitrogen doped TiO2 synthesized from different nitrogen dopants. Appl Surf Sci 268:204–208

    Article  CAS  Google Scholar 

  • Dastkhoon M, Ghaedi M, Asfaram A, Goudarzi A, Langroodi SM, Tyagi I, Agarwal S, Gupta VK (2015) Ultrasound assisted adsorption of malachite green dye onto ZnS: Cu–NP–AC: Equilibrium isotherms and kinetic studies—response surface optimization. Sep Purif Technol 156:780–788

    Article  CAS  Google Scholar 

  • Dedual G, MacDonald MJ, Alshareef A, Wu Z, Tsang DC, Yip AC (2014) Requirements for effective photocatalytic oxidative desulfurization of a thiophene-containing solution using TiO2. J Environ Chem Eng 2:1947–1955

    Article  CAS  Google Scholar 

  • Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56

    Article  CAS  Google Scholar 

  • Essandoh M, Wolgemuth D, Charles UPJ, Mohan D, Mlsna T (2017) Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 174:49–57

    Article  CAS  Google Scholar 

  • Fakhri A, Rashidi S, Tyagi I, Agarwal S, Gupta VK (2016) Photodegradation of Erythromycin antibiotic by γ–Fe2O3/SiO2 nanocomposite: response surface methodology modeling and optimization. J Mol Liq 214:378–383

    Article  CAS  Google Scholar 

  • Fernande-Ibanez P, Blanco J, Malato S, Nieves FJ (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Res 37:3180–3188

    Article  CAS  Google Scholar 

  • García-Araya JF, Beltran FJ, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85:798–804

    Article  CAS  Google Scholar 

  • Hoseinian-Maleki F, Nemati A, Joya YF (2015) Synthesis of C–N–Y tri-doped TiO2 photo-catalyst for MO degradation and characterization. Mater Res Express 2:1–12

    Article  CAS  Google Scholar 

  • Khataee AR, Vatanpour V, Amani Ghadim AR (2009) Decolorization of C.I. Acid blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study. J Hazard Mater 161:1225–1233

    Article  CAS  Google Scholar 

  • Kılıç Ç, Zunger A (2002) N-type doping of oxides by hydrogen. Appl Phys Lett 81:73–75

    Article  CAS  Google Scholar 

  • Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Recent developments in titanium oxide-based photocatalysts. Appl Catal A Gen 325:1–14

    Article  CAS  Google Scholar 

  • Kobayakawa K, Murakami Y, Sato Y (2005) Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea. J Photochem Photobiol, A 170:177–179

    Article  CAS  Google Scholar 

  • Madaeni SS, Vatanpour V, Monfared HA, Shamsabadi AA, Majdian K, Laki S (2011) Removal of coke particles from oil contaminated marun petrochemical wastewater using PVDF microfiltration membrane. Ind Eng Chem Res 50:11712–11719

    Article  CAS  Google Scholar 

  • Ménesi J, Körösi L, Bazsó É, Zöllmer V, Richardt A, Dékány I (2008) Photocatalytic oxidation of organic pollutants on titania–clay composites. Chemosphere 70:538–542

    Article  CAS  Google Scholar 

  • Mozia S (2010) Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep Purif Technol 73:71–91

    Article  CAS  Google Scholar 

  • Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen 265:115–121

    Article  CAS  Google Scholar 

  • Oskoei V, Dehghani MH, Nazmara S, Heibati B, Asif M, Tyagi I, Agarwal S, Gupta VK (2016) Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. J Mol Liq 213:374–380

    Article  CAS  Google Scholar 

  • Palmer RA, Doan TM, Lloyd PG, Jarvis BL, Ahmed NU (2002) Reduction of TiO2 with hydrogen plasma. Plasma Chem Plasma Process 22:335–350

    Article  CAS  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Article  CAS  Google Scholar 

  • Porter JF, Li YG, Chan CK (1999) The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. J Mater Sci 34:1523–1531

    Article  CAS  Google Scholar 

  • Pourjafar S, Jahanshahi M, Rahimpour A (2013) Optimization of TiO2 modified poly(vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method. Desalination 315:107–114

    Article  CAS  Google Scholar 

  • Rajabi HR, Khani O, Shamsipur M, Vatanpour V (2013) High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J Hazard Mater 250–251:370–378

    Article  CAS  Google Scholar 

  • Royaee SJ, Sohrabi M, Soleymani F (2011) Performance of a photo-impinging streams reactor for the phenol degradation process. J Chem Technol Biotechnol 86:205–212

    Article  CAS  Google Scholar 

  • Sheydaei M, Aber S, Khataee A (2014a) Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H2O2/UV: optimization and kinetics studies. J Ind Eng Chem 20:1772–1778

    Article  CAS  Google Scholar 

  • Sheydaei M, Aber S, Khataee A (2014b) Preparation of a novel γ-FeOOH-GAC nano composite for decolorization of textile wastewater by photo Fenton-like process in a continuous reactor. J Mol Catal A: Chem 392:229–234

    Article  CAS  Google Scholar 

  • Singh SA, Madras G (2013) Photocatalytic degradation with combustion synthesized WO3 and WO3TiO2 mixed oxides under UV and visible light. Sep Purif Technol 105:79–89

    Article  CAS  Google Scholar 

  • Tsumura T, Kojitani N, Umemura H, Toyoda M, Inagaki M (2002) Composites between photoactive anatase-type TiO2 and adsorptive carbon. Appl Surf Sci 196:429–436

    Article  CAS  Google Scholar 

  • Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J Phys Chem Solids 63:1909–1920

    Article  CAS  Google Scholar 

  • Vatanpour V, Karami A, Sheydaei M (2017) Central composite design optimization of Rhodamine B degradation using TiO2 nanoparticles/UV/PVDF process in continuous submerged membrane photoreactor. Chem Eng Process Process Intensif 116:68–75

    Article  CAS  Google Scholar 

  • Weimin XI, Geissen SU (2001) Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration. Water Res 35:1256–1262

    Article  Google Scholar 

  • Xing M, Zhang J, Chen F (2009) New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl Catal B Environ 89:563–569

    Article  CAS  Google Scholar 

  • Yakavalangi ME, Rimaz S, Vatanpour V (2017) Effect of surface properties of polysulfone support on the performance of thin film composite polyamide reverse osmosis membranes. J Appl Polym Sci 134:44444

    Google Scholar 

  • Zamani N, Rajabi HR, Taghdiri M, Fakhaei AS, Vatanpour V (2014) Comparative study of different systems for adsorption and catalytic oxidation of hexamine in industrial wastewaters. J Ind Eng Chem 20:37–45

    Article  CAS  Google Scholar 

  • Zhou L, Deng J, Zhao Y, Liu W, An L, Chen F (2009) Preparation and characterization of N–I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation. Mater Chem Phys 117:522–527

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Kharazmi University, Iran, for financial and other supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vatanpour.

Additional information

Editorial responsibility: V.K. Gupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatanpour, V., Karami, A. & Sheydaei, M. Improved visible photocatalytic activity of TiO2 nanoparticles to use in submerged membrane photoreactor for organic pollutant degradation. Int. J. Environ. Sci. Technol. 16, 2405–2414 (2019). https://doi.org/10.1007/s13762-017-1640-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1640-4

Keywords

Navigation