Skip to main content

Advertisement

Log in

Reducing leachable petroleum hydrocarbon concentration in weathered fuel oil contaminated soil by chemical oxidation with hydrogen peroxide

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Number 6 fuel oil is one of the most used energy sources for electricity generation. However, leaks can contaminate soil and also groundwater due to leaching. At old sites, the oil may have low toxicity but still contaminate groundwater with foul-tasting compounds even at low concentrations. The purpose of this study was to evaluate the feasibility of applying H2O2 to reduce the leaching potential of a fuel oil contaminated soil. A silt-loam soil was collected from a contaminated thermal-electric plant with a hydrocarbon concentration of 3.2% in soil producing 4.3 mg/l in leachate. Hydrogen peroxide was applied (0.1, 0.2, 0.3, 0.6, 1.2% dry weight basis), and petroleum hydrocarbons were measured in soil and leachate pre- and post-treatment (72 h). At first, the soil and leachate concentrations diminished linearly (24.4 and 27.3% in soil and leachate, respectively). This was followed by a phase in which the concentration in leachate diminished greatly (75.8%) although the concentration in soil was reduced only moderately (15.1%). Overall, hydrocarbons in leachates were reduced 82.4% even though concentrations in soil were only reduced 35.8%. Correlation analysis showed that at only 1.0% w/w H2O2 a concentration of petroleum hydrocarbons in leachate safe for human consumption (≤ 1 mg/l) could be obtained even with a final hydrocarbon concentration in soil > 2%. Thus, this study presents an alternative strategy for remediation of fuel oil contaminated soils in urban environments that protects water sources by focusing on contamination in leachates, without spending extra financial resources to reduce the hydrocarbon concentration in low-toxicity soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AASHTO (2015) AASHTO T 180 Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop. American Association of State Highway and Transportation Officials, 01 Jan 2015, Washington D.C., USA, p 14

  • Adams RH, Guzmán-Osorio FJ (2008) Evaluation of land farming and chemico-biological stabilization for treatment of heavily contaminated sediments in a tropical environment. Int J Environ Sci Technol 5:169–178

    Article  Google Scholar 

  • Adams RH, Morales-García F (2008) Concentración Residual de Hidrocarburos en Suelo del Trópico. I: consideraciones Para la Salud Pública y Protección al Ganado. Interciencia 33:476–482

    Google Scholar 

  • Adams RH, Guzmán FJ, Zavala J (2008a) Water repellency in oil contaminated sandy and clayey soils. Int J Environ Sci Technol 5:445–454

    Article  CAS  Google Scholar 

  • Adams RH, Morales-García FA, Zavala-Cruz J (2008b) Concentración residual de hidrocarburos en suelo del trópico. II: afectación a la fertilidad y su recuperación. Interciencia 33:483–489

    Google Scholar 

  • Adams RH, Guzmán-Osorio FJ, Domínguez-Rodríguez VI (2014) Field-scale evaluation of the chemical–biological stabilization process for the remediation of hydrocarbon-contaminated soil. Int J Environ Sci Technol 11:1343–1352

    Article  CAS  Google Scholar 

  • Adams RH, Cerecedo-López RA, Alejandro-Álvarez LA et al (2016) Treatment of water-repellent petroleum-contaminated soil from Bemidji, Minnesota, by alkaline desorption. Int J Environ Sci Technol 13:2249–2260

    Article  CAS  Google Scholar 

  • Al-Sarawi M, Massoud MS, Al-Abdali F (1998) Preliminary assessment of oil contamination levels in soils contaminated with oil lakes in the greater burgan oil fields, Kuwait. Water Air Soil Pollut 106:493–504

    Article  CAS  Google Scholar 

  • Astbury GR (2002) Safe scale-up of oxidation by hydrogen peroxide in flammable solvents. Org Process Res Dev 6:893–895

    Article  CAS  Google Scholar 

  • ASTM (1995) Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. American Society for Testing and Materials. West Conshohocken, PA, USA. www.astm.org/Standards/E1739.htm

  • Bañón-Blázquez L, Beviá-García JF (2000) Manual de carreteras. Volumen II: construcción y mantenimiento. Universidad de Alicante, Alicante

    Google Scholar 

  • British Petroleum (2011) Fuel oil safety data sheet. http://www.bp.com/content/dam/bp-marine/en/documents/USA-RMGtoRMK.pdf. Accessed 17 April 2017

  • Chaîneau CH, Morel JL, Oudot J (1996) Land treatment of oil-based drill cuttings in an agricultural soil. J Environ Qual 25:858–867

    Article  Google Scholar 

  • Chaîneau CH, Morel JL, Oudot J (2000) Vertical infiltration of fuel oil hydrocarbons in an agricultural soil. Toxicol Environ Chem 74:111–124

    Article  Google Scholar 

  • Chaîneau CH, Yepremian C, Vidalie JF et al (2003) Bioremediation of a crude oil-polluted soil: biodegradation, leaching and toxicity assessments. Water Air Soil Pollut 144:419–440

    Article  Google Scholar 

  • Chen J-R, Chen S-K (2005) Experimental studies of ignition and explosions in cyclohexane liquid under oxygen oxidation conditions. J Loss Prev Process Ind 18:97–106

    Article  Google Scholar 

  • Davies BE (1974) Loss-on-ignition as an estimate of soil organic matter. Soil Sci Soc Am J 38:150–151

    Article  Google Scholar 

  • Dekker LW, Jungeris PD (1990) Water repellency in the dunes with special reference to The Netherlands. Catena Suppl 18:173–183

    Google Scholar 

  • Ezra S, Feinstein S, Pelly I et al (2000) Weathering of fuel oil spill on the east Mediterranean coast, Ashdod, Israel. Org Geochem 31:1733–1741

    Article  CAS  Google Scholar 

  • Farzadkia M, Dehghani M, Moafian M (2014) The effects of Fenton process on the removal of petroleum hydrocarbons from oily sludge in Shiraz oil refinery, Iran. J Environ Heal Sci Eng 12:1–7

    Article  Google Scholar 

  • Fernández LC, Rojas NG, Roldán TG et al (2006) Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Instituto Mexicano del Petróleo, Mexico City

    Google Scholar 

  • Garcia PV, Linhares D, Amaral AFS, Rodrigues AS (2012) Exposure of thermoelectric power-plant workers to volatile organic compounds from fuel oil: genotoxic and cytotoxic effects in buccal epithelial cells. Mutat Res Toxicol Environ Mutagen 747:197–201

    Article  CAS  Google Scholar 

  • Goi A, Kulik N, Trapido M (2006) Combined chemical and biological treatment of oil contaminated soil. Chemosphere 63:1754–1763

    Article  CAS  Google Scholar 

  • Goi A, Trapido M, Kulik N (2009) Contaminated soil remediation with hydrogen peroxide oxidation. Int Sch Sci Res Innov 3:209–213

    Google Scholar 

  • González JM (2009) La generación eléctrica a partir de combustibles fósiles. Boletín Inst Investig Eléctricas 33:143–151

    Google Scholar 

  • Guzmán RA, Sánchez S, García E (2007) Efecto de los residuos de una industria cerámica sobre la contaminación del suelo. Rev Ciencias Técnicas Agropecu 16:46–52

    Google Scholar 

  • Haag WR, Yao CCD (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013

    Article  CAS  Google Scholar 

  • ITRC (2005) Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater. Interstate Technology & Regulatory Council—In Situ Chemical Oxidation Team, Washington D.C., USA

  • King PM (1981) Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Aust J Soil Res 19:275–285

    Article  Google Scholar 

  • Kong S-H, Watts RJ, Choi J-H (1998) Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37:1473–1482

    Article  CAS  Google Scholar 

  • Koolivand A, Naddafi K, Nabizadeh R et al (2014) Application of hydrogen peroxide and fenton as pre- and post-treatment steps for composting of bottom sludge from crude oil storage tanks. Pet Sci Technol 32:1562–1568

    Article  CAS  Google Scholar 

  • Leelamanie DAL, Karube J (2009) Effects of hydrophobic and hydrophilic organic matter on the water repellency of model sandy soils. Soil Sci Plant Nutr 55:462–467

    Article  CAS  Google Scholar 

  • Lim MW, Von Lau E, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull 109:14–45

    Article  CAS  Google Scholar 

  • Litvina M, Todoruk TR, Langford CH (2003) Composition and structure of agents responsible for development of water repellency in soils following oil contamination. Environ Sci Technol 37:2883–2888

    Article  CAS  Google Scholar 

  • López F, Martínez VE (2001) Efecto de hidrocarburos en las propiedades físicas y químicas de suelo arcilloso. Terra Latinoam 19:9–17

    Google Scholar 

  • López R, Tentle MA (2012) Análisis de los desplazamientos horizontales observados con GPS en el occidente de la cuenca de México. Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Marín-García DC, Adams RH, Hernández-Barajas R (2016) Effect of crude petroleum on water repellency in a clayey alluvial soil. Int J Environ Sci Technol 13:55–64

    Article  Google Scholar 

  • Menendez-Vega D, Gallego JLR, Pelaez AI et al (2007) Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. Eur J Soil Biol 43:310–321

    Article  CAS  Google Scholar 

  • Morales-Bautista CM, Adams RH, Guzmán-Osorio F, Marín-García D (2013) Dilution-extrapolation hydrometer method for easy determination of API gravity of heavily weathered hydrocarbons in petroleum contaminated soil. Energy Environ Res 3:115–124

    Article  Google Scholar 

  • Nakaya N, Motomura S, Yokoi H (1977) Some aspects on water repellency of soils. Soil Sci Plant Nutr 23:409–415

    Article  CAS  Google Scholar 

  • Ojinnaka C, Osuji L, Achugasim O (2012) Remediation of hydrocarbons in crude oil-contaminated soils using Fenton’s reagent. Environ Monit Assess 184:6527–6540

    Article  CAS  Google Scholar 

  • Petigara BR, Blough NV, Mignerey AC (2002) Mechanisms of hydrogen peroxide decomposition in soils. Environ Sci Technol 36:639–645

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Quan HN, Teel AL, Watts RJ (2003) Effect of contaminant hydrophobicity on hydrogen peroxide dosage requirements in the Fenton-like treatment of soils. J Hazard Mater 102:277–289

    Article  CAS  Google Scholar 

  • Riser-Roberts E (1998) Remediation of petroleum contaminated soils: biological, physical, and chemical processes. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ruíz-Saucedo U (2006) Guía Técnica para Orientar la Elaboración de Estudios de Evaluación de Riesgo Ambiental de Sitios Contaminados. Secretaría de Medio Ambiente y Recursos Naturales, Dirección General de Gestión Integral de Materiales y Actividades Riesgosas (DGGIMAR). México, D.F.

  • SEMARNAT (1993) Norma Oficial Mexicana NOM-053-SEMARNAT-1993, que estableceque establece el procedimiento para llevar a cabo la prueba de extracción para determinar los constituyentes que hacen a un residuo peligroso por su toxicidad al ambiente. Secretaría de Medio Ambiente y Recursos Naturales, Diario Oficial de la Federación, 22 Oct 1993, Mexico City, Mexico, p 24

  • SEMARNAT (2002) Norma Oficial Mexicana NOM-021-SEMARNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Secretaría de Medio Ambiente y Recursos Naturales, Diario Oficial de la Federación, 31 Dec 2002, Mexico City, Mexico, p 85

  • SEMARNAT (2007) Oficio No. DGGIMAT. 710/006805. Resolutivo del Programa de Remediación para la Restauración en el sitio del pasivo ambiental de Texistepec, Veracruz (Presa Agua de Mina, Unidad Minera Texistepec). Secretaría de Medio Ambiente y Recursos Naturales, Dirección General de Gestión Integral de Materiales y Actividades Riesgosas (DGGIMAR). Mexico, D.F. 22 Oct 2007

  • SEMARNAT (2013) Norma Oficial Mexicana NOM-138-SEMARNAT/SSA1-2012, que establece los límites máximos permisibles de hidrocarburos en suelos y lineamientos para el muestreo en la caracterización y especificaciones para la remediación. Secretaría de Medio Ambiente y Recursos Naturales, Diario Oficial de la Federación, 10 Sept 2013, Mexico City, Mexico, 14p

  • Teutli León MMM, Ruíz Tagle AC, Rodríguez Zamora K et al (2003) Remediación en suelos contaminados por hidrocarburos y de lodos de recorte mediante electrólisis, compuestos oxidantes y zeolitas naturales. Tecnol Ciencia Educ 18:81–89

    Google Scholar 

  • Tsai TT, Kao CM (2009) Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag. J Hazard Mater 170:466–472

    Article  CAS  Google Scholar 

  • Tsai TT, Kao CM, Yeh TY et al (2009a) Remediation of fuel oil-contaminated soils by a three-stage treatment system. Environ Eng Sci 26:651–659

    Article  CAS  Google Scholar 

  • Tsai TT, Kao CM, Surampalli RY, Chien HY (2009b) Enhanced bioremediation of fuel-oil contaminated soils: laboratory feasibility study. J Environ Eng 135:845–853

    Article  CAS  Google Scholar 

  • Vorhees DJ, Weisman WH, Gustafson JB (1999) Human health risk-based evaluation of petroleum release sites: implementing the working group approach. Total petroleum hydrocarbon criteria working group series, vol 5. Amherst Scientific Publishers, Amherst

  • WDEQ (2014) Fact Sheet #12 Soil Cleanup Levels. Wyoming Department of Environmental Qualitiy, Voluntary Remediation Program, 12 Feb 2014, Cheyenne, Wyoming, USA, p 24

  • Zavala-Cruz J, Gavi-Reyes F, Domínguez-Ezquivel JM et al (2005) Derrames de petróleo en suelos y adaptación de pastos tropicales en el Activo Cinco Presidentes, Tabasco, México. Terra Latinoam 23:293–302

    Google Scholar 

Download references

Acknowledgements

We would like to thank the non-profit organization Centro de Investigación Balam-Europeo, A.C. for economic support for this project (Project No. CIB-2016-001), as well as Jorge Cano, Rubén Viornery and Analleli Romero for logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Adams.

Additional information

Editorial responsibility: J. Aravind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Frasca, E., Adams, R.H. & Domínguez-Rodríguez, V.I. Reducing leachable petroleum hydrocarbon concentration in weathered fuel oil contaminated soil by chemical oxidation with hydrogen peroxide. Int. J. Environ. Sci. Technol. 15, 2381–2388 (2018). https://doi.org/10.1007/s13762-017-1619-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1619-1

Keywords

Navigation