Advertisement

Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review

  • M. Nasirian
  • Y. P. Lin
  • C. F. Bustillo-Lecompte
  • M. Mehrvar
Review

Abstract

Titanium dioxide (TiO2) is an efficient photocatalyst for removing organics in photocatalytic wastewater treatment, but its low photoactivity limits its practical applications in a visible-light-driven chemical reaction. Many efforts have been made in the activation of the visible light absorption property on TiO2 photocatalyst. In this paper, a thorough review of current non-metal doping methods of TiO2 to improve photocatalyst activation under visible light is presented. The focus of this study is on doping non-metals onto TiO2 by several methods to enhance its visible light photoactivity. Besides, the resultant characteristics of the chemical structure, physical structure, and optical properties of the doped photocatalysts are discussed. This review enables a better understanding of current advantages and disadvantages that can arise during the production of non-metal-doped TiO2 and its applications. The annealing and hydrothermal methods are found to be more efficient in preparing doped photocatalysts with respect to time and costs. When choosing between these two approaches, the hydrothermal method can be applied using a variety of precursors, whereas the annealing methods are restricted only to solid form precursors. Thus, the hydrothermal method is a more favorable method of non-metal doping of TiO2. However, studies should focus on the effects of different factors involved in each synthesis/preparation method to determine optimal preparation conditions.

Keywords

Photocatalysis Non-metal doping Titanium dioxide composites Visible spectrum 

Nomenclature

4-CP

4-Chlorophenol

AOP

Advanced oxidation processes

BET

Brunauer–Emmett–Teller

BtOH

1-Butanol

CB

Conduction band

DRS

Diffuse reflectance spectroscopy

EDS

Energy-dispersive spectroscopy

EtOH

Ethanol

\({\text{HO}}^{ \cdot }\)

Hydroxyl radical

iPrOH

Isopropanol

MB

Methylene blue

MC-LR

Microcystin-LR

MeOH

Methanol

MG

Malachite green

MO

Methyl orange

RhB

Rhodamine B

RR4

Reactive red 4

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

UV

Ultraviolet

UV–VIS

UV–visible

VB

Valence band

X-3B

Reactive brilliant red dye, reactive red 2

XPS

X-ray photoelectron spectroscopy

XRD

X-ray diffraction

Notes

Acknowledgments

The financial support of Natural Sciences and Engineering Research Council of Canada (NSERC), Ontario Graduate Scholarship (OGS) program, Ontario Trillium Scholarship (OTS) program, and Ryerson University Faculty of Engineering and Architectural Science Dean’s Research Fund is greatly appreciated.

References

  1. Abdelhaleem A, Chu W (2017) Photodegradation of 4-chlorophenoxyacetic acid under visible LED activated N-doped TiO2 and the mechanism of stepwise rate increment of the reused catalyst. J Hazard Mater 338:491–501. doi: 10.1016/j.jhazmat.2017.05.056 CrossRefGoogle Scholar
  2. Ali SMYMM, Sandhya KY (2016) One step solvothermal synthesis of ultra-fine N-doped TiO2 with enhanced visible light catalytic properties. RSC Adv 6:60522. doi: 10.1039/c6ra09525a CrossRefGoogle Scholar
  3. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40:3000–3009. doi: 10.1039/c5nj03478g CrossRefGoogle Scholar
  4. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271. doi: 10.1126/science.1061051 CrossRefGoogle Scholar
  5. Azami MS, Nawawi WI, Ishak MAM, Ismail K, Ahmad Z, Jawad AH (2016) Carbon nitrogen co-doped P25: parameter study on photodegradation of reactive red 4. MATEC Web of Conf 47:05018. doi: 10.1051/matecconf/20164705018 CrossRefGoogle Scholar
  6. Bagheri S, Muhd Julkapli N (2016) Synergistic effects on hydrogenated TiO2 for photodegradation of synthetic compounds pollutants. Int J Hydrog Energy 41:14652–14664. doi: 10.1016/j.ijhydene.2016.06.179 CrossRefGoogle Scholar
  7. Bakar SA, Ribeiro C (2016a) Prospective aspects of preferential 001 facets of N, S–co-doped TiO2 photocatalysts for visible-light-responsive photocatalytic activity. RSC Adv 6:89274. doi: 10.1039/c6ra16881g CrossRefGoogle Scholar
  8. Bakar SA, Ribeiro C (2016b) Low temperature synthesis of N-doped TiO2 with rice-like morphology through peroxo assisted hydrothermal route: materials characterization and photocatalytic properties. Appl Surf Sci 377:121–133. doi: 10.1016/j.apsusc.2016.03.137 CrossRefGoogle Scholar
  9. Bakar SA, Ribeiro C (2016c) A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped TiO2 photocatalysts: a case study of possible sulfur doping through chemical protocol. J Mol Catal A Chem 421:1–15. doi: 10.1016/j.molcata.2016.05.003 CrossRefGoogle Scholar
  10. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B 176–177:396–428. doi: 10.1016/j.apcatb.2015.03.058 CrossRefGoogle Scholar
  11. Bustillo-Lecompte CF, Ghafoori S, Mehrvar M (2016) Photochemical degradation of an actual slaughterhouse wastewater by continuous UV/H2O2 photoreactor with recycle. J Environ Chem Eng 4(1):719–732. doi: 10.1016/j.jece.2015.12.009 CrossRefGoogle Scholar
  12. Byranvand MM, Kharat AN, Fatholahi L, Beiranvand ZM (2013) A review on synthesis of nano-TiO2 via different methods. J Nanostruct 3(1):1–9. doi: 10.7508/jns.2013.01.001 Google Scholar
  13. Chen J, Qiu F, Xu W, Cao S, Zhu H (2015) Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl Catal A Gen 495:131–140. doi: 10.1016/j.apcata.2015.02.013 CrossRefGoogle Scholar
  14. Chen X, Kuo DH, Lu D (2017) Visible light response and superior dispersed S-doped TiO2 nanoparticles synthesized via ionic liquid. Adv Powder Technol 28:1213–1220. doi: 10.1016/j.apt.2017.02.007 CrossRefGoogle Scholar
  15. Cheng J, Chen J, Lin W, Liu Y, Kong Y (2015) Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl Surf Sci 332:573–580. doi: 10.1016/j.apsusc.2015.01.218 CrossRefGoogle Scholar
  16. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679. doi: 10.1021/j100102a038 CrossRefGoogle Scholar
  17. Chung J, Chung JW, Kwak SY (2015) Adsorption-assisted photocatalytic activity of nitrogen and sulfur codoped TiO2 under visible light irradiation. Phys Chem Chem Phys 17(26):17279–17287. doi: 10.1039/c5cp02322j CrossRefGoogle Scholar
  18. Devi LG, Kavitha R (2013) A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B 140–141:559–587. doi: 10.1016/j.apcatb.2013.04.035 CrossRefGoogle Scholar
  19. Di Valentin C, Pacchioni G (2013) Trends in non-metal doping of anatase TiO2: B, C, N and F. Catal Today 206:12–18. doi: 10.1016/j.cattod.2011.11.030 CrossRefGoogle Scholar
  20. Dozzi MV, Selli E (2013) Doping TiO2 with p-block elements: effects on photocatalytic activity. J Photochem Photobiol C Photochem Rev 14:13–28. doi: 10.1016/j.jphotochemrev.2012.09.002 CrossRefGoogle Scholar
  21. Du C, Zhou J, Li F, Li W, Wang Y, He Q (2016) Extremely fast dark adsorption rate of carbon and nitrogen co-doped TiO2 prepared by a relatively fast, facile and low-cost microwave method. Appl Phys A 122:714. doi: 10.1007/s00339-016-0231-4 CrossRefGoogle Scholar
  22. El-Sheikh SM, Zhang G, El-Hosainy HM, Ismail AA, O’Shea KE, Falaras P, Kontos AG, Dionysiou DD (2014) High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J Hazard Mater 280:723–733. doi: 10.1016/j.jhazmat.2014.08.038 CrossRefGoogle Scholar
  23. El-Sheikh SM, Khedr TM, Hakki A, Ismail AA, Badawy WA (2017) Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Sep Purif Technol 173:258–268. doi: 10.1016/j.seppur.2016.09.034 CrossRefGoogle Scholar
  24. Eslami A, Amini MM, Yazdanbakhsh AR, Mohseni-Bandpei A, Safari AA, Asadi A (2016) N, S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study. J Chem Technol Biotechnol 91:2693–2704. doi: 10.1002/jctb.4877 CrossRefGoogle Scholar
  25. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21. doi: 10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  26. Gao HT, Liu YY, Ding CH, Dai DM, Liu GJ (2011) Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities. Int J Miner Metall Mater 18(5):606–614. doi: 10.1007/s12613-011-0485-y CrossRefGoogle Scholar
  27. Georgieva J, Valova E, Armyanov S, Tatchev D, Sotiropoulos S, Avramova I, Dimitrova N, Hubin A, Steenhaut O (2017) A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance. Appl Surf Sci 413:284–291. doi: 10.1016/j.apsusc.2017.04.055 CrossRefGoogle Scholar
  28. Giannakas AE, Antonopoulou M, Daikopoulos C, Deligiannakis Y (2016) Characterization and catalytic performance of B-doped, B–N co-doped and B–N–F tri-doped TiO2 towards simultaneous Cr(VI) reduction and benzoic acid oxidation. Appl Catal B 184:44–54. doi: 10.1016/j.apcatb.2015.11.009 CrossRefGoogle Scholar
  29. Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46(17):5453–5471. doi: 10.1016/j.watres.2012.07.048 CrossRefGoogle Scholar
  30. Ha SJ, Kim DH, Moon JH (2015) N-doped mesoporous inverse opal structures for visible-light photocatalysts. RSC Adv 5(95):77716–77722. doi: 10.1039/c5ra13198g CrossRefGoogle Scholar
  31. Hamad D, Dhib R, Mehrvar M (2016) Photochemical degradation of aqueous polyvinyl alcohol in a continuous UV/H2O2 Process: experimental and statistical analysis. J Polym Environ 24(1):72–83. doi: 10.1007/s10924-016-0750-2 CrossRefGoogle Scholar
  32. Han C, Andersen J, Likodimos V, Falaras P, Linkugel J, Dionysiou DD (2014) The effect of solvent in the sol-gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment. Catal Today 224:132–139. doi: 10.1016/j.cattod.2013.11.052 CrossRefGoogle Scholar
  33. He D, Li Y, Wang I, Wu J, Yang Y, An Q (2017) Carbon wrapped and doped TiO2 mesoporous nanostructure with efficient visible-light photocatalysis for NO removal. Appl Surf Sci 391:318–325. doi: 10.1016/j.apsusc.2016.06.186 CrossRefGoogle Scholar
  34. Hirose Y, Itadani A, Ohkubo T, Hashimoto H, Takada J, Kittaka S, Kuroda Y (2017) Tubular nitrogen-doped TiO2 samples with efficient photocatalytic properties based on long-lived charge separation under visible-light irradiation: synthesis, characterization and reactivity. Dalton Trans 46:4435–4451. doi: 10.1039/c6dt04914a CrossRefGoogle Scholar
  35. Hou H, Gao F, Shang M, Wang L, Zheng J, Liu Q, Yang Z, Xu J, Yang W (2017) Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J Mater Sci Mater Electron 28:3796–3805. doi: 10.1007/s10854-016-5990-3 CrossRefGoogle Scholar
  36. Huang L, Fu W, Fu X, Zong B, Liu H, Bala H, Wang X, Sun G, Cao J, Zhang Z (2017) Facile and large-scale preparation of N doped TiO2 photocatalyst with high visible light photocatalytic activity. Mater Lett. doi: 10.1016/j.matlet.2017.08.092 Google Scholar
  37. Iwase M, Yamada K, Kurisaki T, Ohtani B, Wakita H (2013) A study on the active sites for visible-light photocatalytic activity of phosphorus-doped titanium(IV) oxide particles prepared using a phosphide compound. Appl Catal B 140–141:327–332. doi: 10.1016/j.apcatb.2013.04.018 CrossRefGoogle Scholar
  38. Ji P, Takeuchi M, Cuong TM, Zhang J, Matsuoka M, Anpo M (2010) Recent advances in visible light-responsive titanium oxide-based photocatalysts. Res Chem Intermed 36:327–347. doi: 10.1007/s11164-010-0142-5 CrossRefGoogle Scholar
  39. Kassahun SK, Kiflie Z, Shin DW, Park SS, Jung WY, Chung YR (2017) Optimization of sol-gel synthesis parameters in the preparation of N-doped TiO2 using surface response methodology. J Sol-Gel Sci Technol 82:322–334. doi: 10.1007/s10971-017-4322-2 CrossRefGoogle Scholar
  40. Kusano D, Emori M, Sakama H (2017) Influence of electronic structure on visible light photocatalytic activity of nitrogen-doped TiO2. RSC Adv 7:1887–1898. doi: 10.1039/c6ra25238a CrossRefGoogle Scholar
  41. Lei XF, Xue XX, Yang H, Chen C, Li X, Niu MC, Gao XY, Yang YT (2015) Effect of calcination temperature on the structure and visible-light photocatalytic activities of (N, S and C) co-doped TiO2 nano-materials. Appl Surf Sci 332:172–180. doi: 10.1016/j.apsusc.2015.01.110 CrossRefGoogle Scholar
  42. Li D, Chen F, Jiang D, Shi W, Zheng W (2016) Enhanced photocatalytic activity of N-doped TiO2 nanocrystals with exposed 001 facets. Appl Surf Sci 390:689–695. doi: 10.1016/j.apsusc.2016.07.149 CrossRefGoogle Scholar
  43. Li C, Zhao Z, Shindume Lomboleni H, Huang H, Peng Z (2017) Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J Mater Res 32:737–747. doi: 10.1557/jmr.2016.448 CrossRefGoogle Scholar
  44. Lin Y, Guo S, Han S, Zeng C, Jiang N, Song B, Sun Y (2011) The effect of different concentration of nitrogen in N, S codoped TiO2. Adv Mat Res 183–185:1791–1794. doi: 10.4028/www.scientific.net/AMR.183-185.1791 CrossRefGoogle Scholar
  45. Lin X, Fu D, Hao L, Ding Z (2013) Synthesis and enhanced visible-light responsive of C, N, S-tridoped TiO2 hollow spheres. J Environ Sci 25(10):2150–2156. doi: 10.1016/S1001-0742(13)60414-3 (China) CrossRefGoogle Scholar
  46. Lin YC, Chien TE, Lai PC, Chiang YH, Li KL, Lin JL (2015a) TiS2 transformation into S-doped and N-doped TiO2 with visible-light catalytic activity. Appl Surf Sci 359:1–6. doi: 10.1016/j.apsusc.2015.10.004 CrossRefGoogle Scholar
  47. Lin HHH, Lin AYC, Hung CL (2015b) Photocatalytic oxidation of cytostatic drugs by microwave-treated N-doped TiO2 under visible light. J Chem Technol Biotechnol 90(7):1345–1354. doi: 10.1002/jctb.4503 CrossRefGoogle Scholar
  48. Lu J, Wang Y, Huang J, Fei J, Cao L, Li C (2017) In situ synthesis of mesoporous C-doped TiO2 single crystal with oxygen vacancy and its enhanced sunlight photocatalytic properties. Dye Pigment 144:203–211. doi: 10.1016/j.dyepig.2017.05.033 CrossRefGoogle Scholar
  49. Malakootian M, Mansuri F (2015) Hexavalent chromium removal by titanium dioxide photocatalytic reduction and the effect of phenol and humic acid on its removal efficiency. Int J Env Health Eng 4:19. doi: 10.4103/2277-9183.157720 CrossRefGoogle Scholar
  50. Malakootian M, Jaafarzadeh N, Dehdarirad A (2016) Efficiency investigation of photo-Fenton process in removal of sodium dodecyl sulphate from aqueous solutions. Desalination Water Treat 57(51):24444–24449. doi: 10.1080/19443994.2016.1140082 CrossRefGoogle Scholar
  51. Malakootian M, Mesdaghinia A, Rezaei S (2017) Photocatalytic removal of o-chlorophenol by using a mixture of modified fly ash and TiO2 nanoparticles. J Kerman Univ Med Sci 24(2):147–158Google Scholar
  52. Malekshahi Byranvand M, Nemati Kharat A, Fatholahi L, Malekshahi Beiranvand Z (2013) A review on synthesis of nano-TiO2 via different methods. JNS 3:1–9. doi: 10.1016/j.progsolidstchem.2004.08.001 CrossRefGoogle Scholar
  53. Marschall R, Wang L (2014) Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal Today 225:111–135. doi: 10.1016/j.cattod.2013.10.088 CrossRefGoogle Scholar
  54. Martins NCT, Ângelo J, Girão AV, Trindade T, Andrade L, Mendes A (2016) N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl Catal B 193:67–74. doi: 10.1016/j.apcatb.2016.04.016 CrossRefGoogle Scholar
  55. Mazierski P, Nischk M, Golkowska M, Lisowski W, Gazda M, Winiarski MJ, Klimczuk T, Zaleska-Medynska A (2016) Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: the effect of applied voltage, anodization time and amount of nitrogen dopant. Appl Catal B 196:77–88. doi: 10.1016/j.physe.2016.06.004 CrossRefGoogle Scholar
  56. McManamon C, O’Connell J, Delaney P, Rasappa S, Holmes JD, Morris MA (2015) A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity. J Mol Catal A Chem 406:51–57. doi: 10.1016/j.molcata.2015.05.002 CrossRefGoogle Scholar
  57. Mohajerani M, Mehrvar M, Ein-Mozaffari F (2011) Correlation and prediction of azo dye degradation by nonlinear least-square regression in combined ozonation and ultrasonolysis processes. Water Qual Res J Can 46(3):250–258. doi: 10.2166/wqrjc.2011.128 CrossRefGoogle Scholar
  58. Mohamed MA, Salleh WNW, Jaafar J, Ismail AF, Nor NAM (2015) Photodegradation of phenol by N-Doped TiO2 anatase/rutile nanorods assembled microsphere under UV and visible light irradiation. Mater Chem Phys 162(18131):113–123. doi: 10.1016/j.matchemphys.2015.05.033 CrossRefGoogle Scholar
  59. Nah YC, Paramasivam I, Schmuki P (2010) Doped TiO2 and TiO2 nanotubes: synthesis and applications. Chem Phys Chem 11:2698–2713. doi: 10.1002/cphc.201000276 CrossRefGoogle Scholar
  60. Nasirian M, Mehrvar M (2016) Modification of TiO2 to enhance photocatalytic degradation of organics in aqueous solutions. J Environ Chem Eng 4(4):4072–4082. doi: 10.1016/j.jece.2016.08.008 CrossRefGoogle Scholar
  61. Nasirian M, Bustillo-Lecompte CF, Mehrvar M (2017) Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: effects of calcination temperature and UV-assisted thermal synthesis. J Environ Manage 196:487–498. doi: 10.1016/j.jenvman.2017.03.030 CrossRefGoogle Scholar
  62. Nawawi WI, Nawi MA (2014) Carbon coated nitrogen doped P25 for the photocatalytic removal of organic pollutants under solar and low energy visible light irradiations. J Mol Catal A Chem 383–384:83–93. doi: 10.1016/j.molcata.2013.11.030 CrossRefGoogle Scholar
  63. Niu J, Lu P, Kang M, Deng K, Yao B, Yu X, Zhang Q (2014) P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method. Appl Surf Sci 319(1):99–106. doi: 10.1016/j.apsusc.2014.07.048 CrossRefGoogle Scholar
  64. Nolan NT, Synnott DW, Seery MK, Hinder SJ, Wassenhoven AV, Pillai SC (2012) Effect of N-doping on the photocatalytic activity of sol-gel TiO2. J Hazard Mater 211–212:88–94. doi: 10.1016/j.jhazmat.2011.08.074 CrossRefGoogle Scholar
  65. Parada-Gamboa NJ, Pedraza-Avella JA, Melendez AM (2017) Effect of substrate surface treatment on electrochemically assisted photocatalytic activity of N–S co-doped TiO2 films. IOP Conf Ser J Phys Conf Ser 786:012045. doi: 10.1088/1742-6596/786/1/012045 CrossRefGoogle Scholar
  66. Park EJ, Jeong B, Jeong MG, Kim YD (2014) Synergetic effects of hydrophilic surface modification and N-doping for visible light response on photocatalytic activity of TiO2. Curr Appl Phys 14(3):300–305. doi: 10.1016/j.cap.2013.12.004 CrossRefGoogle Scholar
  67. Quinones DH, Rey A, Alvarez PM, Beltran FJ, Li Puma G (2015) Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: diuron, o-phenylphenol, MCPA and terbuthylazine. Appl Catal B 178:74–81. doi: 10.1016/j.apcatb.2014.10.036 CrossRefGoogle Scholar
  68. Ramandi S, Entezari MH, Ghows N (2017) Sono-synthesis of solar light responsive S–N–C–tri doped TiO2 photo-catalyst under optimized conditions for degradation and mineralization of Diclofenac. Ultrason Sonochem 38:234–245. doi: 10.1016/j.ultsonch.2017.03.008 CrossRefGoogle Scholar
  69. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A Gen 489:1–16. doi: 10.1016/j.apcata.2014.10.001 CrossRefGoogle Scholar
  70. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem 50:2904–2939. doi: 10.1002/anie.201001374 CrossRefGoogle Scholar
  71. Saien J, Mesgari Z (2016) Highly efficient visible-light photocatalyst of nitrogen-doped TiO2 nanoparticles sensitized by hematoporphyrin. J Mol Catal A Chem 414:108–115. doi: 10.1016/j.molcata.2015.12.027 CrossRefGoogle Scholar
  72. Salarian AA, Hami Z, Mirzaei N, Mohseni SM, Asadi A, Bahrami H, Vosoughi M, Alinejad A, Zare MR (2016) N-doped TiO2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: optimization and modeling using a response surface methodology. J Mol Liq 220:183–191. doi: 10.1016/j.molliq.2016.04.060 CrossRefGoogle Scholar
  73. Samokhvalov A (2017) Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew Sustain Energy Rev 72:981–1000. doi: 10.1016/j.rser.2017.01.024 CrossRefGoogle Scholar
  74. Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Centi G (2016a) Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts. Appl Surf Sci 370:380–393. doi: 10.1016/j.apsusc.2016.02.172 CrossRefGoogle Scholar
  75. Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Kandjani AE, Bhargava SK (2016b) Effective role of trifluoroacetic acid (TFA) to enhance the photocatalytic activity of F-doped TiO2 prepared by modified sol-gel method. Appl Surf Sci 365:57–68. doi: 10.1016/j.apsusc.2016.01.016 CrossRefGoogle Scholar
  76. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110(48):24287–24293. doi: 10.1021/jp065659r CrossRefGoogle Scholar
  77. Shao Y, Cao C, Chen S, He M, Fang J, Chen J, Li X, Li D (2015) Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan. Appl Catal B 179:344–351. doi: 10.1016/j.apcatb.2015.05.023 CrossRefGoogle Scholar
  78. Shetty R, Chavan VB, Kulkarni PS, Kulkarni BD, Kamble SP (2016) Photocatalytic degradation of pharmaceuticals pollutants using N-doped TiO2 photocatalyst: identification of CFX degradation intermediates. Indian Chem Eng 59(3):177–199. doi: 10.1080/00194506.2016.1150794 CrossRefGoogle Scholar
  79. Shi W, Yang W, Li Q, Gao S, Shang P, Shang JK (2012) The synthesis of nitrogen/sulfur co-doped TiO2 nanocrystals with a high specific surface area and a high percentage of 001 facets and their enhanced visible-light photocatalytic performance. Nanoscale Res Lett 7:1–9. doi: 10.1186/1556-276X-7-590 CrossRefGoogle Scholar
  80. Shvadchina YO, Cherepivskaya MK, Vakulenko VF, Sova AN, Stolyarova IV, Prikhodko RV (2015) The study of properties and catalytic activity of titanium dioxide doped with sulphure. J Water Chem Technol 37(6):283–288. doi: 10.3103/S1063455X15060041 CrossRefGoogle Scholar
  81. Simsek EB (2017) Solvothermal synthesized boron doped TiO2 catalysts: photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl Catal B 200:309–322. doi: 10.1016/j.apcatb.2016.07.016 CrossRefGoogle Scholar
  82. Sridhar S, Arunnellaiappan T, Rameshbabu N, Mika S, Viswanathan A (2017) Solar photocatalytic activity of nitrogen doped TiO2 coating by micro-arc oxidation. Surf Eng 33(10):779–786. doi: 10.1080/02670844.2016.1259090 CrossRefGoogle Scholar
  83. Sun X, Xing J, Qiu J (2016a) Preparation and photocatalytic activity of nonmetal Co-doped titanium dioxide photocatalyst. Russ J Phys Chem A 90(6):1151–1156. doi: 10.1134/S0036024416060303 CrossRefGoogle Scholar
  84. Sun S, Sun M, Fang Y, Wang Y, Wang H (2016b) One-step in situ calcinations synthesis of g–C3N4/N–TiO2 hybrids with enhances photoactivity. RSC Adv 6:13063–13071. doi: 10.1039/c5ra26700e CrossRefGoogle Scholar
  85. Suwannaruang T, Wantala K (2016) Single-step uncalcined N–TiO2 synthesis, characterizations and its applications on alachlor photocatalytic degradations. Appl Surf Sci 380:257–267. doi: 10.1016/j.apsusc.2016.01.117 CrossRefGoogle Scholar
  86. Szatmary L, Bakardjieva S, Subrt J, Bezdicka P, Jirkovsky J, Bastl Z, Brezova V, Korenko M (2011) Sulphur doped nanoparticles of TiO2. Catal Today 161:23–28. doi: 10.1016/j.cattod.2010.11.082 CrossRefGoogle Scholar
  87. Szkoda M, Siuzdak K, Lisowska-Oleksiak A (2016) Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water. Phys E 84:141–145. doi: 10.1016/j.physe.2016.06.004016/j.cattod.2010.11.082 CrossRefGoogle Scholar
  88. Than LD, Luong NS, Ngo VD, Tien NM, Dung TN, Nghia NM, Loc NT, Thu VT, Lam TD (2017) Highly visible light activity of nitrogen doped TiO2 prepared by sol–gel approach. J Electron Mater 46(1):158–166. doi: 10.1007/s11664-016-4894-6 CrossRefGoogle Scholar
  89. Vaiano V, Sacco O, Iervolino G, Sannino D, Ciambelli P, Liguori R, Bezzeccheri E, Rubino A (2015) Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2. Appl Catal B 176–177:594–600. doi: 10.1016/j.apcatb.2015.04.049 CrossRefGoogle Scholar
  90. Vaiano V, Sacco O, Sannino D, Navarra W, Daniel C, Venditto V (2017) Influence of aggregate size on photoactivity of N-doped TiO2 particles in aqueous suspensions under visible light irradiation. J Photochem Photobiol A Chem 336:191–197. doi: 10.1016/j.jphotochem.2017.01.009 CrossRefGoogle Scholar
  91. Wang S, Zhou S (2011) Photodegradation of methyl orange by photocatalyst of CNTs/P–TiO2 under UV and visible-light irradiation. J Hazard Mater 185(1):77–85. doi: 10.1016/j.jhazmat.2010.08.125 CrossRefGoogle Scholar
  92. Wang P, Yap PS, Lim TT (2011) C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Appl Catal A 399(1–2):252–261. doi: 10.1016/j.apcata.2011.04.008 CrossRefGoogle Scholar
  93. Wang W, Liu Y, Qu J, Chen Y, Shao Z (2016) Nitrogen-doped TiO2 microspheres with hierarchical micro/nanostructures and rich dual-phase junctions for enhanced photocatalytic activity. RSC Adv 6:40923. doi: 10.1039/c6ra02966c CrossRefGoogle Scholar
  94. Wang SQ, Liu WB, Fu P, Cheng WL (2017) Enhanced photoactivity of N-doped TiO2 for Cr(VI) removal: influencing factors and mechanism. Korean J Chem Eng 34(5):1584–1590. doi: 10.1007/s11814-017-0003-7 CrossRefGoogle Scholar
  95. Xia Y, Jiang Y, Li F, Xia M, Xue B, Li Y (2014) Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2. Appl Surf Sci 289:306–315. doi: 10.1016/j.apsusc.2013.10.157 CrossRefGoogle Scholar
  96. Xiang Q, Yu J, Jaroniec M (2011) Nitrogen and sulfur co-doped TiO2 nanosheets with exposed 001 facets: synthesis, characterization and visible-light photocatalytic activity. Phys Chem Chem Phys 13(11):4853–4861. doi: 10.1039/c0cp01459a CrossRefGoogle Scholar
  97. Xu H, Ouyang S, Liu L, Reunchan P, Umezawa N, Ye J (2014) Recent advances in TiO2-based photocatalysis. J Mater Chem A 2:12642–12661. doi: 10.1039/c4ta00941j CrossRefGoogle Scholar
  98. Yan C, Chen KF, Lai CH, Lai SW, Chang Q, Peng YP (2014) Photocatalytic degradation of Rhodamine B by microwave-assisted hydrothermal synthesized N-doped titanate nanotubes. J Environ Sci 26:1505–1512. doi: 10.1016/j.jes.2014.05.017 CrossRefGoogle Scholar
  99. Yu L, Lin Y, Huang J, Lin S, Li D (2017) A visible light photocatalyst of carbonate-like species doped TiO2. J Am Ceram Soc 100:333–342. doi: 10.1111/jace.14552 CrossRefGoogle Scholar
  100. Yuan C, Hung CH, Li HW, Chang WH (2016) Photodegradation of ibuprofen by TiO2 co-doping with urea and functionalized CNT irradiated with visible light–Effect of doping content and pH. Chemosphere 155:471–478. doi: 10.1016/j.chemosphere.2016.04.055 CrossRefGoogle Scholar
  101. Yunus NN, Hamzah F, So’aib MS, Krishnan J (2017) Effect of catalyst loading on photocatalytic degradation of phenol by using N, S co-doped TiO2. IOP Conf Ser Mater Sci Eng 206:12092. doi: 10.1088/1757-899X/206/1/012092 CrossRefGoogle Scholar
  102. Zadeh KR, Malakootian M (2017) O3/UV photo-oxidation for the removal of reactive yellow 3 dye from wastewater. Desalination Water Treat 81:322–326. doi: 10.5004/dwt.2017.21178 CrossRefGoogle Scholar
  103. Zaleska A (2008) Doped-TiO2: a Review. Recent Pat Eng 2(3):157–164. doi: 10.2174/187221208786306289 CrossRefGoogle Scholar
  104. Zeng L, Lu Z, Li M, Yang J, Song W, Zeng D, Xie C (2016) A modular calcination method to prepare modified N-doped TiO2 nanoparticle with high photocatalytic activity. Appl Catal B 183:308–316. doi: 10.1016/j.apcatb.2015.10.048 CrossRefGoogle Scholar
  105. Zhang X, Zhou J, Gu Y, Fan D (2015a) Visible-Light Photocatalytic Activity of N-Doped TiO2 Nanotube Arrays on Acephate Degradation. J Nanomater art. doi: 10.1155/2015/527070 Google Scholar
  106. Zhang Y, Liu P, Wu H (2015b) Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts. Appl Surf Sci 328:335–343. doi: 10.1016/j.apsusc.2014.12.043 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • M. Nasirian
    • 1
  • Y. P. Lin
    • 2
  • C. F. Bustillo-Lecompte
    • 2
  • M. Mehrvar
    • 2
  1. 1.Graduate Programs in Environmental Applied Science and ManagementRyerson UniversityTorontoCanada
  2. 2.Department of Chemical EngineeringRyerson UniversityTorontoCanada

Personalised recommendations