Skip to main content
Log in

Trimethylphenylammonium-modified montmorillonite: efficient hybrid adsorbent for removal of U(VI) from carbonate- and sulfate-containing solutions

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Montmorillonite (MMT) clay was modified using the hydrothermal method through the intercalation and adsorption of the trimethylphenylammonium bromide (TMPA) and applied for the removal of U(VI) from the carbonate- and sulfate-containing solutions using batch experiments. The hydrothermal technique provides a simple, fast, and efficient route for the successful preparation of TMPA-MMT. The prepared adsorbent was characterized by FTIR, XRD, SEM, and TGA techniques. The increasing interlayer space of MMT from 1.20 to 2.02 nm occurs as a result of TMPA intercalation. The modification of MMT by a TMPA surfactant enhanced adsorption capacity of U(VI) species from sulfate- and carbonate-containing solutions over a wide range of pH. The highest capacity for adsorption of U(VI)-carbonate and U(VI)-sulfate complexes was around 38 and 26 mg/g, respectively. The outer-sphere surface complexation is probably dominant mechanism in adsorption of anionic uranyl carbonate and sulfate species. These findings proposed that TMPA-MMT can be applied as an efficient and potential adsorbent for the removal of uranyl anionic species from carbonate- and sulfate-containing aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2(6):335–341

    Article  CAS  Google Scholar 

  • Alkaram UF, Mukhlis AA, Al-Dujaili AH (2009) The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J Hazard Mater 169(1):324–332

    Article  CAS  Google Scholar 

  • Anirudhan T, Bringle C, Rijith S (2010) Removal of uranium (VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101(3):267–276

    Article  CAS  Google Scholar 

  • Behnsen J, Riebe B (2008) Anion selectivity of organobentonites. Appl Geochem 23(9):2746–2752

    Article  CAS  Google Scholar 

  • Bors J, Dultz S, Riebe B (2000) Organophilic bentonites as adsorbents for radionuclides: I. Adsorption of ionic fission products. Appl Clay Sci 16(1):1–13

    Article  CAS  Google Scholar 

  • Bouras O, Houari M, Khalaf H (2001) Using of surfactant modified Fe-pillared bentonite for the removal of pentachlorophenol from aqueous stream. Environ Technol 22(1):69–74

    Article  CAS  Google Scholar 

  • Boyd SA, Mortland MM, Chiou CT (1988) Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. Soil Sci Soc Am J 52(3):652–657

    Article  CAS  Google Scholar 

  • Brown G (1982) Crystal structures of clay minerals and their X-ray identification. The Mineralogical Society of Great Britain and Ireland, UK

    Google Scholar 

  • Brum MC, Capitaneo JL, Oliveira JF (2010) Removal of hexavalent chromium from water by adsorption onto surfactant modified montmorillonite. Miner Eng 23(3):270–272

    Article  CAS  Google Scholar 

  • Camacho LM, Deng S, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 175(1):393–398

    Article  CAS  Google Scholar 

  • Chellam S, Clifford DA (2002) Physical–chemical treatment of groundwater contaminated by leachate from surface disposal of uranium tailings. J Environ Eng 128(10):942–952

    Article  CAS  Google Scholar 

  • Churchman G, Gates W, Theng B, Yuan G (2006).1 clays and clay minerals for pollution control. Dev Clay Sci 1:625–675

    Article  CAS  Google Scholar 

  • de Paiva LB, Morales AR, Díaz FRV (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1):8–24

    Article  Google Scholar 

  • Dong Y, Wu D, Chen X, Lin Y (2010) Adsorption of bisphenol a from water by surfactant-modified zeolite. J Colloid Interface Sci 348(2):585–590

    Article  CAS  Google Scholar 

  • Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163(2):475–510

    Article  CAS  Google Scholar 

  • Gonen Y, Rytwo G (2006) Using the dual-mode model to describe adsorption of organic pollutants onto an organoclay. J Colloid Interface Sci 299(1):95–101

    Article  CAS  Google Scholar 

  • Greathouse JA, Cygan RT (2005) Molecular dynamics simulation of uranyl (VI) adsorption equilibria onto an external montmorillonite surface. Phys Chem Chem Phys 7(20):3580–3586

    Article  CAS  Google Scholar 

  • Gupta VK, Atar N, Yola ML, Üstündağ Z, Uzun L (2014) A novel magnetic Fe@ Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Olgun A, Demir Hİ, Yola ML, Atar N (2016) Adsorptive properties of molasses modified boron enrichment waste based nanoclay for removal of basic dyes. J Ind Eng Chem 34:244–249

    Article  CAS  Google Scholar 

  • Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93(3):127–143

    Article  CAS  Google Scholar 

  • Hiyoshi K, Morimitsu W (1991) Adsorption of uranium on organo-clay complex. Radioisotopes (Tokyo) 40(10):399–405

    Article  CAS  Google Scholar 

  • Ho Y-S, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

  • Karaca S, Gürses A, Ejder Korucu M (2012) Investigation of the orientation of CTA+ ions in the interlayer of CTAB pillared montmorillonite. J Chem 2013:10

    Google Scholar 

  • Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63(7):1165–1169

    Article  CAS  Google Scholar 

  • Kooli F, Liu Y, Alshahateet SF, Messali M, Bergaya F (2009) Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Appl Clay Sci 43(3):357–363

    Article  CAS  Google Scholar 

  • Kubilay Ş, Gürkan R, Savran A, Şahan T (2007) Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 13(1):41–51

    Article  CAS  Google Scholar 

  • Kulyukhin S, Krasavina E, Gredina I, Mizina L (2010) Sorption of U (VI) from aqueous solutions on layered double hydroxides of Mg, Al, and Nd. Radiochemistry 52(6):653–661

    Article  CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Vet Akad Handl 24(4):1–39

    Google Scholar 

  • Lee J, Lee H (2004) Characterization of organobentonite used for polymer nanocomposites. Mater Chem Phys 85(2):410–415

    Article  CAS  Google Scholar 

  • Lee SM, Tiwari D (2012) Organo and inorgano–organo-modified clays in the remediation of aqueous solutions: an overview. Appl Clay Sci 59:84–102

    Article  Google Scholar 

  • Lee Y-C, Park W-K, Yang J-W (2011) Removal of anionic metals by amino-organoclay for water treatment. J Hazard Mater 190(1):652–658

    Article  CAS  Google Scholar 

  • Li J, Zhang Y (2012) Remediation technology for the uranium contaminated environment: a review. Procedia Environ Sci 13:1609–1615

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJ (1991) Microbial reduction of uranium. Nature 350(6317):413

    Article  CAS  Google Scholar 

  • Majdan M, Pikus S, Gajowiak A, Gładysz-Płaska A, Krzyżanowska H, Żuk J, Bujacka M (2010a) Characterization of uranium (VI) sorption by organobentonite. Appl Surf Sci 256(17):5416–5421

    Article  CAS  Google Scholar 

  • Majdan M, Pikus S, Gajowiak A, Sternik D, Zięba E (2010b) Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide. J Hazard Mater 184(1):662–670

    Article  CAS  Google Scholar 

  • McKinley JP, Zachara JM, Smith SC, Turner GD (1995) The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U (VI) to montmorillonite. Clay Clay Miner 43(5):586–598

    Article  CAS  Google Scholar 

  • Niu Z, Fan Q, Wang W, Xu J, Chen L, Wu W (2009) Effect of pH, ionic strength and humic acid on the sorption of uranium (VI) to attapulgite. Appl Radiat Isot 67(9):1582–1590

    Article  CAS  Google Scholar 

  • Nourmoradi H, Nikaeen M, Pourzamani H, Nejad MH (2013) Comparison of the efficiencies of modified clay with polyethylene glycol and tetradecyl trimethyl ammonium bromide for BTEX removal. Int J Environ Health Eng 2(1):7

    Article  Google Scholar 

  • Park Y, Ayoko GA, Frost RL (2011) Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. J Colloid Interface Sci 354(1):292–305

    Article  CAS  Google Scholar 

  • Parolo ME, Pettinari GR, Musso TB, Sánchez-Izquierdo MP, Fernández LG (2014) Characterization of organo-modified bentonite sorbents: the effect of modification conditions on adsorption performance. Appl Surf Sci 320:356–363

    Article  CAS  Google Scholar 

  • Prikryl JD, Jain A, Turner DR, Pabalan RT (2001) Uranium VI sorption behavior on silicate mineral mixtures. J Contam Hydrol 47(2):241–253

    Article  CAS  Google Scholar 

  • Rachkova N, Shuktomova I (2010) Sorption of U (VI) and Ra from aqueous solutions with analcime-containing rock. Radiochemistry 52(1):76–80

    Article  CAS  Google Scholar 

  • Riebe B, Dultz S, Bunnenberg C (2005) Temperature effects on iodine adsorption on organo-clay minerals: I. Influence of pretreatment and adsorption temperature. Appl Clay Sci 28(1):9–16

    Article  CAS  Google Scholar 

  • Sarkar B, Xi Y, Megharaj M, Krishnamurti GS, Rajarathnam D, Naidu R (2010) Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. J Hazard Mater 183(1):87–97

    Article  CAS  Google Scholar 

  • Sarkar B, Megharaj M, Xi Y, Naidu R (2011) Structural characterisation of Arquad® 2HT-75 organobentonites: surface charge characteristics and environmental application. J Hazard Mater 195:155–161

    Article  CAS  Google Scholar 

  • Şimşek S, Baybaş D, Koçyiğit MÇ, Yıldırım H (2014) Organoclay modified with lignin as a new adsorbent for removal of Pb2+ and Uo22+. J Radioanal Nucl Chem 299(1):283–292

    Article  Google Scholar 

  • Smith KS (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. Environ Geochem Miner Depos Part B Case Stud Res Top 6:161–182

    Google Scholar 

  • Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2011) Adsorption performance of talc for uranium removal from aqueous solution. Chem Eng J 171(3):1185–1193

    Article  CAS  Google Scholar 

  • Takeda S, Shima S, Kimura H, Matsuzuru H (1995) The aqueous solubility and speciation analysis for uranium, neptunium and selenium by the geochemical code (EQ3/6). Res Jpn At Energy Res Inst (Tokyo) 95:069

    Google Scholar 

  • Turner G, Zachara J, McKinley J, Smith S (1996) Surface-charge properties and Uo22+ adsorption of a subsurface smectite. Geochim Cosmochim Acta 60(18):3399–3414

    Article  CAS  Google Scholar 

  • Wang L, Wang A (2008) Adsorption properties of congo red from aqueous solution onto surfactant-modified montmorillonite. J Hazard Mater 160(1):173–180

    Article  CAS  Google Scholar 

  • Warchoł J, Misaelides P, Petrus R, Zamboulis D (2006) Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J Hazard Mater 137(3):1410–1416

    Article  Google Scholar 

  • Xi Y, Mallavarapu M, Naidu R (2010) Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl Clay Sci 48(1):92–96

    Article  CAS  Google Scholar 

  • Yola ML, Eren T, Atar N (2014a) A novel efficient photocatalyst based on Tio 2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. Chem Eng J 250:288–294

    Article  CAS  Google Scholar 

  • Yola ML, Eren T, Atar N, Wang S (2014b) Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste. Chem Eng J 242:333–340

    Article  CAS  Google Scholar 

  • Yu J, Wang J, Jiang Y (2017) Removal of uranium from aqueous solution by alginate beads. Nucl Eng Technol 49(3):534–540

    Article  CAS  Google Scholar 

  • Yusan SD, Akyil S (2008) Sorption of uranium (VI) from aqueous solutions by akaganeite. J Hazard Mater 160(2):388–395

    Article  CAS  Google Scholar 

  • Zawrah M, Khattab R, Saad E, Gado R (2014) Effect of surfactant types and their concentration on the structural characteristics of nanoclay. Spectrochim Acta Part A Mol Biomol Spectrosc 122:616–623

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical assistance of faculty staff in Tarbiat Modares University and Nuclear Science and Technology Research Institute (NSTRI), Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Darban.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seddighi, H., Darban, A.K., Khanchi, A. et al. Trimethylphenylammonium-modified montmorillonite: efficient hybrid adsorbent for removal of U(VI) from carbonate- and sulfate-containing solutions. Int. J. Environ. Sci. Technol. 16, 1921–1932 (2019). https://doi.org/10.1007/s13762-017-1617-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1617-3

Keywords

Navigation