Skip to main content
Log in

Removal of organic matter from reservoir water: mechanisms underpinning surface chemistry of natural adsorbents

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

One of the key challenges in water treatment industry is the removal of organic compounds by cost-effective methods. This study evaluated the adsorptive removal of dissolved organic carbon (DOC) from reservoir water using fuller’s earth (FE) in comparison with natural (SQ) and modified quartz (MSQ) sands. The removal capacities of FE at different contact times, pH levels, adsorbent dosages and initial DOC concentrations were compared with both the quartz sands. The optimum DOC removals by FE and SQs were achieved at contact time of 60 and 30 min, pH level of 6 and 4, and at adsorbent dose of 1.5 g/150 mL and 10 g/100 mL, respectively. The adsorption capacity of FE (1.05 mg/g) was much higher compared to the MSQ (0.04 mg/g) and SQ (0.01 mg/g). Adsorption equilibrium data better fitted to the Freundlich model than to the Langmuir model, suggesting that adsorption occurred primarily through multilayer formation onto the surfaces of FE and SQ. The pseudo-second-order model described the uptake kinetics more effectively than the pseudo-first-order and intra-particle diffusion models, indicating that the mechanism was primarily governed by chemisorption. These observations were well supported by the physiochemical characteristics and charge behaviour of the adsorbents. In mass-transfer study, the results of liquid film diffusion model showed that the adsorption of DOC on FE was not controlled by film diffusion, but other mechanisms also played an essential role. This study demonstrates that FE is an effective adsorbent for the removal of DOC in surface water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arias-Paic M, Cawley KM, Byg S, Rosario-Ortiz FL (2016) Enhanced DOC removal using anion and cation ion exchange resins. Water Res 88:981–989. doi:10.1016/j.watres.2015.11.019

    Article  CAS  Google Scholar 

  • Atun G, Hisarli G, Sheldrick WS, Muhler M (2003) Adsorptive removal of methylene blue from colored effluents on fuller’s earth. J Colloid Interface Sci 261:32–39. doi:10.1016/S0021-9797(03)00059-6

    Article  CAS  Google Scholar 

  • Bajpai AK, Vishwakarma N (2003) Adsorption of polyvinylalcohol onto fuller’s earth surfaces. Colloids Surf A 220:117–130. doi:10.1016/S0927-7757(03)00073-6

    Article  CAS  Google Scholar 

  • Bhatt AS, Sakaria PL, Vasudevan M, Pawar RR, Sudheesh N, Bajaj HC, Mody HM (2012) Adsorption of an anionic dye from aqueous medium by organoclays: equilibrium modeling, kinetic and thermodynamic exploration. RSC Adv 2:8663–8671

    Article  CAS  Google Scholar 

  • Bonvin F, Jost L, Randin L, Bonvin E, Kohn T (2016) Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Res 90:90–99. doi:10.1016/j.watres.2015.12.001

    Article  CAS  Google Scholar 

  • Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710. doi:10.1021/es034354c

    Article  CAS  Google Scholar 

  • Chow CWK, Fabris R, Jv Leeuwen, Wang D, Drikas M (2008) Assessing natural organic matter treatability using high performance size exclusion chromatography. Environ Sci Technol 42:6683–6689. doi:10.1021/es800794r

    Article  CAS  Google Scholar 

  • Chow CWK, Majewski P, Bauer S, Fabris R, Drikas M (2009) Removal of natural organic matter using self-assembled monolayer technology. Desalin Water Treat 12:344–351

    Article  CAS  Google Scholar 

  • Collins MR, Amy GL, Steelink C (1986) Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic organic matter: implications for removal during water treatment. Environ Sci Technol 20:1028–1032

    Article  CAS  Google Scholar 

  • Das P, Arias EVA, Kambala V, Mallavarapu M, Naidu R (2013) Remediation of perfluorooctane sulfonate in contaminated soils by modified clay adsorbent—a risk-based approach. Water Air Soil Pollut 224:1714

    Article  Google Scholar 

  • Dastgheib SA, Karanfil T, Cheng W (2004) Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon 42:547–557. doi:10.1016/j.carbon.2003.12.062

    Article  CAS  Google Scholar 

  • Deegan AM, Shaik B, Nolan K, Urell K, Oelgemöller M, Tobin J, Morrissey A (2011) Treatment options for wastewater effluents from pharmaceutical companies. Int J Environ Sci Technol 8:649–666. doi:10.1007/bf03326250

    Article  CAS  Google Scholar 

  • Fierro V, Torne-Fernandez V, Montane D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater 111:276–284

    Article  CAS  Google Scholar 

  • Forsberg C (1992) Will an increased greenhouse impact in Fennoscandia give rise to more humic and coloured lakes? Hydrobiologia 229:51–58. doi:10.1007/BF00006990

    Article  CAS  Google Scholar 

  • Freundlich H (1926) Colloid and capillary chemistry. Methuen, London

    Google Scholar 

  • Gone DL, Seidel J-L, Batiot C, Bamory K, Ligban R, Biemi J (2009) Using fluorescence spectroscopy EEM to evaluate the efficiency of organic matter removal during coagulation–flocculation of a tropical surface water (Agbo reservoir). J Hazard Mater 172:693–699. doi:10.1016/j.jhazmat.2009.07.052

    Article  CAS  Google Scholar 

  • Gu L, Xu J, Lv L, Liu B, Zhang H, Yu X, Luo Z (2011) Dissolved organic nitrogen (DON) adsorption by using Al-pillared bentonite. Desalination 269(1–3):206–213

    Article  CAS  Google Scholar 

  • Hedegaard MJ, Albrechtsen H-J (2014) Microbial pesticide removal in rapid sand filters for drinking water treatment—potential and kinetics. Water Res 48:71–81. doi:10.1016/j.watres.2013.09.024

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742. doi:10.1016/S0043-1354(99)00232-8

    Article  CAS  Google Scholar 

  • Humbert H, Gallard H, Suty H, Croué J-P (2005) Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Res 39:1699–1708. doi:10.1016/j.watres.2005.02.008

    Article  CAS  Google Scholar 

  • Hussain S, van Leeuwen J, Chow CWK, Aryal R, Beecham S, Duan J, Drikas M (2014) Comparison of the coagulation performance of tetravalent titanium and zirconium salts with alum. Chem Eng J 254:635–646. doi:10.1016/j.cej.2014.06.014

    Article  CAS  Google Scholar 

  • Hyung H, Kim J-H (2008) Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol 42:4416–4421. doi:10.1021/es702916h

    Article  CAS  Google Scholar 

  • Jarvis KL, Majewski P (2012) Plasma polymerized allylamine coated quartz particles for humic acid removal. J Colloid Interface Sci 380:150–158. doi:10.1016/j.jcis.2012.05.002

    Article  CAS  Google Scholar 

  • Kitis M, İlker Harman B, Yigit NO, Beyhan M, Nguyen H, Adams B (2007) The removal of natural organic matter from selected Turkish source waters using magnetic ion exchange resin (MIEX®). React Funct Polym 67:1495–1504. doi:10.1016/j.reactfunctpolym.2007.07.037

    Article  CAS  Google Scholar 

  • Korth A, Fiebiger C, Bornmann K, Schmidt W (2004) NOM increase in drinking water reservoirs-relevance for drinking water production. Water Supply 4:55–60

    CAS  Google Scholar 

  • Lagergren S (1898) Zur Theorie der Sogenannten Absorption gelöster Stoffe. PA Norstedt & söner

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. doi:10.1021/ja02242a004

    Article  CAS  Google Scholar 

  • Mana M, Ouali MS, Lindheimer M, de Menorval LC (2008) Removal of lead from aqueous solutions with a treated spent bleaching earth. J Hazard Mater 159(2–3):358–364

    Article  CAS  Google Scholar 

  • Matilainen A, Vieno N, Tuhkanen T (2006) Efficiency of the activated carbon filtration in the natural organic matter removal. Environ Int 32:324–331. doi:10.1016/j.envint.2005.06.003

    Article  CAS  Google Scholar 

  • Matilainen A, Vepsäläinen M, Sillanpää M (2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Coll Interface Sci 159:189–197. doi:10.1016/j.cis.2010.06.007

    Article  CAS  Google Scholar 

  • Matilainen A, Gjessing ET, Lahtinen T, Hed L, Bhatnagar A, Sillanpää M (2011) An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83:1431–1442. doi:10.1016/j.chemosphere.2011.01.018

    Article  CAS  Google Scholar 

  • Oubagaranadin JUK, Sathyamurthy N, Murthy ZVP (2007) Evaluation of fuller’s earth for the adsorption of mercury from aqueous solutions: a comparative study with activated carbon. J Hazard Mater 142:165–174. doi:10.1016/j.jhazmat.2006.08.001

    Article  CAS  Google Scholar 

  • Perelomov L, Sarkar B, Rahman MM, Goryacheva A, Naidu R (2016) Uptake of lead by Na-exchanged and Al-pillared bentonite in the presence of organic acids with different functional groups. Appl Clay Sci 119(Part 2):417–423. doi:10.1016/j.clay.2015.11.004

    Article  CAS  Google Scholar 

  • Rahbar MS, Alipour E, Sedighi RE (2006) Color removal from industrial wastewater with a novel coagulant flocculant formulation. Int J Environ Sci Technol 3:79–88. doi:10.1007/bf03325910

    Article  CAS  Google Scholar 

  • Rusmin R, Sarkar B, Liu Y, McClure S, Naidu R (2015) Structural evolution of chitosan–palygorskite composites and removal of aqueous lead by composite beads. Appl Surf Sci 353:363–375. doi:10.1016/j.apsusc.2015.06.124

    Article  CAS  Google Scholar 

  • Rusmin R, Sarkar B, Biswas B, Churchman J, Liu Y, Naidu R (2016) Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Appl Clay Sci. doi:10.1016/j.clay.2016.07.012

    Google Scholar 

  • Sarkar B, Xi Y, Megharaj M, Krishnamurti GS, Rajarathnam D, Naidu R (2010) Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. J Hazard Mater 183(1–3):87–97

    Article  CAS  Google Scholar 

  • Sarkar B, Megharaj M, Xi Y, Naidu R (2011) Structural characterisation of Arquad® 2HT-75 organobentonites: surface charge characteristics and environmental application. J Hazard Mater 195:155–161. doi:10.1016/j.jhazmat.2011.08.016

    Article  CAS  Google Scholar 

  • Socrates G (2004) Infrared and raman characteristic group frequencies: tables and charts. J Raman Spectrosc 35(10):905

    Article  Google Scholar 

  • Tang Y, Xu Y, Li F, Jmaiff L, Hrudey SE, Li X-F (2016) Nontargeted identification of peptides and disinfection byproducts in water. J Environ Sci 42:259–266. doi:10.1016/j.jes.2015.08.007

    Article  Google Scholar 

  • Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22:46–56

    Article  Google Scholar 

  • Worrall F, Burt TP (2007) Trends in DOC concentration in Great Britain. J Hydrol 346:81–92. doi:10.1016/j.jhydrol.2007.08.021

    Article  Google Scholar 

  • Yang Y, Lohwacharin J, Takizawa S (2014) Hybrid ferrihydrite-MF/UF membrane filtration for the simultaneous removal of dissolved organic matter and phosphate. Water Res 65:177–185. doi:10.1016/j.watres.2014.07.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Australian Research Council (ARC) for providing financial support for this research project, under Grant LP110200208. The authors would also like to thank Prof. Peter Majewski and his team of Mawson Institute, University of South Australia, for providing the natural and modified quartz sands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sarkar.

Additional information

Editorial responsibility: Binbin Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., van Leeuwen, J., Aryal, R. et al. Removal of organic matter from reservoir water: mechanisms underpinning surface chemistry of natural adsorbents. Int. J. Environ. Sci. Technol. 15, 847–862 (2018). https://doi.org/10.1007/s13762-017-1447-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1447-3

Keywords

Navigation