Removal of organic matter from reservoir water: mechanisms underpinning surface chemistry of natural adsorbents

  • S. Hussain
  • J. van Leeuwen
  • R. Aryal
  • B. Sarkar
  • C. W. K. Chow
  • S. Beecham
Original Paper


One of the key challenges in water treatment industry is the removal of organic compounds by cost-effective methods. This study evaluated the adsorptive removal of dissolved organic carbon (DOC) from reservoir water using fuller’s earth (FE) in comparison with natural (SQ) and modified quartz (MSQ) sands. The removal capacities of FE at different contact times, pH levels, adsorbent dosages and initial DOC concentrations were compared with both the quartz sands. The optimum DOC removals by FE and SQs were achieved at contact time of 60 and 30 min, pH level of 6 and 4, and at adsorbent dose of 1.5 g/150 mL and 10 g/100 mL, respectively. The adsorption capacity of FE (1.05 mg/g) was much higher compared to the MSQ (0.04 mg/g) and SQ (0.01 mg/g). Adsorption equilibrium data better fitted to the Freundlich model than to the Langmuir model, suggesting that adsorption occurred primarily through multilayer formation onto the surfaces of FE and SQ. The pseudo-second-order model described the uptake kinetics more effectively than the pseudo-first-order and intra-particle diffusion models, indicating that the mechanism was primarily governed by chemisorption. These observations were well supported by the physiochemical characteristics and charge behaviour of the adsorbents. In mass-transfer study, the results of liquid film diffusion model showed that the adsorption of DOC on FE was not controlled by film diffusion, but other mechanisms also played an essential role. This study demonstrates that FE is an effective adsorbent for the removal of DOC in surface water treatment.


Adsorption Fluorescence spectroscopy Isotherm and kinetics Liquid film diffusion Water treatment 



The authors would like to thank the Australian Research Council (ARC) for providing financial support for this research project, under Grant LP110200208. The authors would also like to thank Prof. Peter Majewski and his team of Mawson Institute, University of South Australia, for providing the natural and modified quartz sands.

Supplementary material

13762_2017_1447_MOESM1_ESM.docx (166 kb)
Supplementary material 1 (DOCX 166 kb)


  1. Arias-Paic M, Cawley KM, Byg S, Rosario-Ortiz FL (2016) Enhanced DOC removal using anion and cation ion exchange resins. Water Res 88:981–989. doi: 10.1016/j.watres.2015.11.019 CrossRefGoogle Scholar
  2. Atun G, Hisarli G, Sheldrick WS, Muhler M (2003) Adsorptive removal of methylene blue from colored effluents on fuller’s earth. J Colloid Interface Sci 261:32–39. doi: 10.1016/S0021-9797(03)00059-6 CrossRefGoogle Scholar
  3. Bajpai AK, Vishwakarma N (2003) Adsorption of polyvinylalcohol onto fuller’s earth surfaces. Colloids Surf A 220:117–130. doi: 10.1016/S0927-7757(03)00073-6 CrossRefGoogle Scholar
  4. Bhatt AS, Sakaria PL, Vasudevan M, Pawar RR, Sudheesh N, Bajaj HC, Mody HM (2012) Adsorption of an anionic dye from aqueous medium by organoclays: equilibrium modeling, kinetic and thermodynamic exploration. RSC Adv 2:8663–8671CrossRefGoogle Scholar
  5. Bonvin F, Jost L, Randin L, Bonvin E, Kohn T (2016) Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Res 90:90–99. doi: 10.1016/j.watres.2015.12.001 CrossRefGoogle Scholar
  6. Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710. doi: 10.1021/es034354c CrossRefGoogle Scholar
  7. Chow CWK, Fabris R, Jv Leeuwen, Wang D, Drikas M (2008) Assessing natural organic matter treatability using high performance size exclusion chromatography. Environ Sci Technol 42:6683–6689. doi: 10.1021/es800794r CrossRefGoogle Scholar
  8. Chow CWK, Majewski P, Bauer S, Fabris R, Drikas M (2009) Removal of natural organic matter using self-assembled monolayer technology. Desalin Water Treat 12:344–351CrossRefGoogle Scholar
  9. Collins MR, Amy GL, Steelink C (1986) Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic organic matter: implications for removal during water treatment. Environ Sci Technol 20:1028–1032CrossRefGoogle Scholar
  10. Das P, Arias EVA, Kambala V, Mallavarapu M, Naidu R (2013) Remediation of perfluorooctane sulfonate in contaminated soils by modified clay adsorbent—a risk-based approach. Water Air Soil Pollut 224:1714CrossRefGoogle Scholar
  11. Dastgheib SA, Karanfil T, Cheng W (2004) Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon 42:547–557. doi: 10.1016/j.carbon.2003.12.062 CrossRefGoogle Scholar
  12. Deegan AM, Shaik B, Nolan K, Urell K, Oelgemöller M, Tobin J, Morrissey A (2011) Treatment options for wastewater effluents from pharmaceutical companies. Int J Environ Sci Technol 8:649–666. doi: 10.1007/bf03326250 CrossRefGoogle Scholar
  13. Fierro V, Torne-Fernandez V, Montane D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater 111:276–284CrossRefGoogle Scholar
  14. Forsberg C (1992) Will an increased greenhouse impact in Fennoscandia give rise to more humic and coloured lakes? Hydrobiologia 229:51–58. doi: 10.1007/BF00006990 CrossRefGoogle Scholar
  15. Freundlich H (1926) Colloid and capillary chemistry. Methuen, LondonGoogle Scholar
  16. Gone DL, Seidel J-L, Batiot C, Bamory K, Ligban R, Biemi J (2009) Using fluorescence spectroscopy EEM to evaluate the efficiency of organic matter removal during coagulation–flocculation of a tropical surface water (Agbo reservoir). J Hazard Mater 172:693–699. doi: 10.1016/j.jhazmat.2009.07.052 CrossRefGoogle Scholar
  17. Gu L, Xu J, Lv L, Liu B, Zhang H, Yu X, Luo Z (2011) Dissolved organic nitrogen (DON) adsorption by using Al-pillared bentonite. Desalination 269(1–3):206–213CrossRefGoogle Scholar
  18. Hedegaard MJ, Albrechtsen H-J (2014) Microbial pesticide removal in rapid sand filters for drinking water treatment—potential and kinetics. Water Res 48:71–81. doi: 10.1016/j.watres.2013.09.024 CrossRefGoogle Scholar
  19. Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742. doi: 10.1016/S0043-1354(99)00232-8 CrossRefGoogle Scholar
  20. Humbert H, Gallard H, Suty H, Croué J-P (2005) Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Res 39:1699–1708. doi: 10.1016/j.watres.2005.02.008 CrossRefGoogle Scholar
  21. Hussain S, van Leeuwen J, Chow CWK, Aryal R, Beecham S, Duan J, Drikas M (2014) Comparison of the coagulation performance of tetravalent titanium and zirconium salts with alum. Chem Eng J 254:635–646. doi: 10.1016/j.cej.2014.06.014 CrossRefGoogle Scholar
  22. Hyung H, Kim J-H (2008) Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol 42:4416–4421. doi: 10.1021/es702916h CrossRefGoogle Scholar
  23. Jarvis KL, Majewski P (2012) Plasma polymerized allylamine coated quartz particles for humic acid removal. J Colloid Interface Sci 380:150–158. doi: 10.1016/j.jcis.2012.05.002 CrossRefGoogle Scholar
  24. Kitis M, İlker Harman B, Yigit NO, Beyhan M, Nguyen H, Adams B (2007) The removal of natural organic matter from selected Turkish source waters using magnetic ion exchange resin (MIEX®). React Funct Polym 67:1495–1504. doi: 10.1016/j.reactfunctpolym.2007.07.037 CrossRefGoogle Scholar
  25. Korth A, Fiebiger C, Bornmann K, Schmidt W (2004) NOM increase in drinking water reservoirs-relevance for drinking water production. Water Supply 4:55–60Google Scholar
  26. Lagergren S (1898) Zur Theorie der Sogenannten Absorption gelöster Stoffe. PA Norstedt & sönerGoogle Scholar
  27. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. doi: 10.1021/ja02242a004 CrossRefGoogle Scholar
  28. Mana M, Ouali MS, Lindheimer M, de Menorval LC (2008) Removal of lead from aqueous solutions with a treated spent bleaching earth. J Hazard Mater 159(2–3):358–364CrossRefGoogle Scholar
  29. Matilainen A, Vieno N, Tuhkanen T (2006) Efficiency of the activated carbon filtration in the natural organic matter removal. Environ Int 32:324–331. doi: 10.1016/j.envint.2005.06.003 CrossRefGoogle Scholar
  30. Matilainen A, Vepsäläinen M, Sillanpää M (2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Coll Interface Sci 159:189–197. doi: 10.1016/j.cis.2010.06.007 CrossRefGoogle Scholar
  31. Matilainen A, Gjessing ET, Lahtinen T, Hed L, Bhatnagar A, Sillanpää M (2011) An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83:1431–1442. doi: 10.1016/j.chemosphere.2011.01.018 CrossRefGoogle Scholar
  32. Oubagaranadin JUK, Sathyamurthy N, Murthy ZVP (2007) Evaluation of fuller’s earth for the adsorption of mercury from aqueous solutions: a comparative study with activated carbon. J Hazard Mater 142:165–174. doi: 10.1016/j.jhazmat.2006.08.001 CrossRefGoogle Scholar
  33. Perelomov L, Sarkar B, Rahman MM, Goryacheva A, Naidu R (2016) Uptake of lead by Na-exchanged and Al-pillared bentonite in the presence of organic acids with different functional groups. Appl Clay Sci 119(Part 2):417–423. doi: 10.1016/j.clay.2015.11.004 CrossRefGoogle Scholar
  34. Rahbar MS, Alipour E, Sedighi RE (2006) Color removal from industrial wastewater with a novel coagulant flocculant formulation. Int J Environ Sci Technol 3:79–88. doi: 10.1007/bf03325910 CrossRefGoogle Scholar
  35. Rusmin R, Sarkar B, Liu Y, McClure S, Naidu R (2015) Structural evolution of chitosan–palygorskite composites and removal of aqueous lead by composite beads. Appl Surf Sci 353:363–375. doi: 10.1016/j.apsusc.2015.06.124 CrossRefGoogle Scholar
  36. Rusmin R, Sarkar B, Biswas B, Churchman J, Liu Y, Naidu R (2016) Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Appl Clay Sci. doi: 10.1016/j.clay.2016.07.012 Google Scholar
  37. Sarkar B, Xi Y, Megharaj M, Krishnamurti GS, Rajarathnam D, Naidu R (2010) Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. J Hazard Mater 183(1–3):87–97CrossRefGoogle Scholar
  38. Sarkar B, Megharaj M, Xi Y, Naidu R (2011) Structural characterisation of Arquad® 2HT-75 organobentonites: surface charge characteristics and environmental application. J Hazard Mater 195:155–161. doi: 10.1016/j.jhazmat.2011.08.016 CrossRefGoogle Scholar
  39. Socrates G (2004) Infrared and raman characteristic group frequencies: tables and charts. J Raman Spectrosc 35(10):905CrossRefGoogle Scholar
  40. Tang Y, Xu Y, Li F, Jmaiff L, Hrudey SE, Li X-F (2016) Nontargeted identification of peptides and disinfection byproducts in water. J Environ Sci 42:259–266. doi: 10.1016/j.jes.2015.08.007 CrossRefGoogle Scholar
  41. Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22:46–56CrossRefGoogle Scholar
  42. Worrall F, Burt TP (2007) Trends in DOC concentration in Great Britain. J Hydrol 346:81–92. doi: 10.1016/j.jhydrol.2007.08.021 CrossRefGoogle Scholar
  43. Yang Y, Lohwacharin J, Takizawa S (2014) Hybrid ferrihydrite-MF/UF membrane filtration for the simultaneous removal of dissolved organic matter and phosphate. Water Res 65:177–185. doi: 10.1016/j.watres.2014.07.030 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  1. 1.Natural and Built Environments Research Centre, School of Natural and Built EnvironmentsUniversity of South AustraliaMawson LakesAustralia
  2. 2.Australian Water Quality CentreSouth Australian Water CorporationAdelaideAustralia
  3. 3.Environmental Science and Engineering Strand, Future Industries InstituteUniversity of South AustraliaMawson LakesAustralia
  4. 4.Department of Animal and Plant SciencesThe University of SheffieldSheffieldUK

Personalised recommendations