Valorization of coffee byproducts for bioethanol production using lignocellulosic yeast fermentation and pervaporation

  • D. Dadi
  • A. Beyene
  • K. Simoens
  • J. Soares
  • M. M. Demeke
  • J. M. Thevelein
  • K. Bernaerts
  • P. Luis
  • B. Van der Bruggen
Original Paper
  • 72 Downloads

Abstract

Industrial residue management is a critical element of sustainable development. The aim of this research was to investigate the potential of different coffee waste fractions for bioethanol fermentation and its purification by pervaporation; these fractions and the role of pervaporation in this application have not been studied before. Bioethanol production from different coffee waste fractions has now been studied by acid or acid and enzymatic hydrolysis. The fermentation was conducted using two different yeasts (baker’s yeast and lignocellulosic yeast). By using the cellulolytic enzymes and lignocellulosic yeast, a higher bioethanol yield was achieved. Further purification of the fermented filtrate was carried out by an alcohol selective pervaporation membrane at four temperatures (23, 30, 40 and 50 °C). Hydrolysis of the samples using cellulose complex and β-glucosidase enzymes and fermentation with lignocellulosic yeast, followed by purification using pervaporation resulted a superior bioethanol yield of 51.7 ± 7.4 g/l for spent coffee and 132.2 ± 40 g/l for husk. Husk hydrolysis using cellulolytic enzymes and fermentation with lignocellulosic yeast, followed by product recovery through pervaporation membrane, was found to be the optimal procedure, producing ethanol at a concentration of 132.2 ± 40 g/l. In general, husk hydrolysis using acid and cellulolytic hydrolysis and fermentation with lignocellulosic yeast GSE16-T18 followed by pervaporation was found to be the best process for producing the highest ethanol yield compared to the other fractions of coffee waste samples.

Graphical Abstract

Keywords

Coffee waste Enzymatic hydrolysis Pervaporation membrane Pretreatment Purification 

Abbreviation

HPLC

High-performance liquid chromatography

MC

Moisture content

EC

Electrical conductivity

VS

Volatile solid

SS

Silver skin

SC

Spent coffee

DCB

Defected coffee bean

IC

Initial concentration

PT

Pervaporation temperature

PP

Pervaporation pressure

EPAP

Ethanol produced after pervaporation

TF

Total flux

BOD

Biological oxygen demand

COD

Chemical oxygen demand

Notes

Acknowledgements

The authors would like to thank coffee processing industry owners, managers and workers for their cooperation during sample collection. Finally, they would like to thank the VLIR-UOS project of Jimma University for financial support.

Funding

This work has been supported by the Institutional University Cooperation Program (IUC) VLIR-UOS project of Belgium and Jimma University, Ethiopia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Achinas S, Euverink GJW (2016) Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechno 23:44–53CrossRefGoogle Scholar
  2. Aguilar R, Ramırez J, Garrote G, Vázquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55(4):309–318CrossRefGoogle Scholar
  3. Aguilar-Valencia DM, Gómez-García MAn, Fontalvo J (2012) Effect of pH, CO2, and High Glucose Concentrations on Polydimethylsiloxane Pervaporation Membranes for Ethanol Removal. Ind Eng Chem Res 51(27):9328–9334CrossRefGoogle Scholar
  4. Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefGoogle Scholar
  5. Ayele K (2011) Bioethanol Production and Optimization test from Agricultural Waste: The case of wet coffee processing waste (pulp). Doctoral disseration, Addis Ababa University, EthiopiaGoogle Scholar
  6. Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energ Combust 34(5):551–573CrossRefGoogle Scholar
  7. Ballesteros M, Oliva J, Negro M, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848CrossRefGoogle Scholar
  8. Bashiri R, Farhadian M, Asadollahi M, Jeihanipour A (2016) Anaerobic digested sludge: a new supplementary nutrient source for ethanol production. Int J Environ Sci Technol 13(3):763–772CrossRefGoogle Scholar
  9. Belkacemi K, Turcotte G, Savoie P (2002) Aqueous/steam-fractionated agricultural residues as substrates for ethanol production. Ind Eng Chem Res 41:173–179CrossRefGoogle Scholar
  10. Bowen TC, Meier RG, Vane LM (2007) Stability of MFI zeolite-filled PDMS membranes during pervaporative ethanol recovery from aqueous mixtures containing acetic acid. J Membrane Sci 298(1–2):117–125CrossRefGoogle Scholar
  11. Caetano NS, Silva VF, Mata TM (2012) Valorization of coffee grounds for biodiesel production. Chem Eng Trans 26:267–272Google Scholar
  12. Chen J, Zhang H, Wei P, Zhang L, Huang H (2014) Pervaporation behavior and integrated process for concentrating lignocellulosic ethanol through polydimethylsiloxane (PDMS) membrane. Bioprocess Biosyst Eng 37(2):183–191CrossRefGoogle Scholar
  13. Choi IS, Wi SG, Kim S-B, Bae H-J (2012) Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresour Technol 125:132–137CrossRefGoogle Scholar
  14. Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechno 21:82–92CrossRefGoogle Scholar
  15. Chovau S, Degrauwe D, Van der Bruggen B (2013) Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew Sust Energ Rev 26:307–321CrossRefGoogle Scholar
  16. Davis L, Jeon Y-J, Svenson C, Rogers P, Pearce J, Peiris P (2005) Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis. Biomass Bioenerg 29(1):49–59CrossRefGoogle Scholar
  17. Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den T, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013a) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for biofuels 6(1):89CrossRefGoogle Scholar
  18. Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquié-Moreno MR, Thevelein JM (2013b) Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnology for biofuels 6(1):120CrossRefGoogle Scholar
  19. Fan L, Soccol A, Pandey A, Soccol C (2003) Cultivation of Pleurotus mushrooms on Brazilian coffee husk and effects of caffeine and tannic acid. Micologia Aplicada Int 15(1):15–21Google Scholar
  20. Fan S et al (2014) Inhibition effect of secondary metabolites accumulated in a pervaporation membrane bioreactor on ethanol fermentation of Saccharomyces cerevisiae. Bioresour Technol 162:8–13CrossRefGoogle Scholar
  21. Gaykawad SS, Zha Y, Punt PJ, van Groenestijn JW, van der Wielen LA, Straathof AJ (2013) Pervaporation of ethanol from lignocellulosic fermentation broth. Bioresour Technol 129:469–476CrossRefGoogle Scholar
  22. Gerland P et al (2014) World population stabilization unlikely this century. Science 346(6206):234–237CrossRefGoogle Scholar
  23. Gouvea B, Torres C, Franca A, Oliveira L, Oliveira E (2009) Feasibility of ethanol production from coffee husks. Biotechnol Lett 31:1315–1319CrossRefGoogle Scholar
  24. Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Energy Research Centre of the Netherlands, pp. 10–13Google Scholar
  25. Huang J, Meagher M (2001) Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes. J Membr Sci 192(1–2):231–242CrossRefGoogle Scholar
  26. International Energy Agency I, 2012 Key world energy statistics. IEA, pp. 1–82Google Scholar
  27. Jun H, Jiayi C (2012) Metabolic engineering of Saccharomyces cerevisiae for increased bioconversion of lignocellulose to ethanol. Indian J Microbiol 52(3):442–448CrossRefGoogle Scholar
  28. Le Man H, Behera S, Park H (2010) Optimization of operational parameters for ethanol production from Korean food waste leachate. Int J Environ Sci Technol 7(1):157–164CrossRefGoogle Scholar
  29. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energ Combust 38(4):449–467CrossRefGoogle Scholar
  30. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol BioT 69(6):627–642CrossRefGoogle Scholar
  31. Liu G, Wei W, Wu H, Dong X, Jiang M, Jin W (2011) Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation–PV coupled process. J Membr Sci 373(1–2):121–129CrossRefGoogle Scholar
  32. Loow Y-L et al (2015) Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J Agr Food Chem 63(38):8349–8363CrossRefGoogle Scholar
  33. Loow Y-L, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016a) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3):1491–1520CrossRefGoogle Scholar
  34. Loow Y-L, Wu TY, Yang GH, Jahim JM, Teoh WH, Mohammad AW (2016b) Role of energy irradiation in aiding pretreatment of lignocellulosic biomass for improving reducing sugar recovery. Cellulose 23(5):2761–2789CrossRefGoogle Scholar
  35. Loow Y-L, Wu TY, Lim YS, Tan KA, Siow LF, Jahim JM, Mohammad AW (2017) Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Convers Manage 138:248–260CrossRefGoogle Scholar
  36. Luis P, Degrève J, Van der Bruggen B (2013) Separation of methanol–n-butyl acetate mixtures by pervaporation: potential of 10 commercial membranes. J Membrane Sci 429:1–12CrossRefGoogle Scholar
  37. Madson PW, Lococo DB (2000) Recovery of volatile products from dilute high-fouling process streams. Appl Biochem Biotech 84(1):1049–1061CrossRefGoogle Scholar
  38. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRefGoogle Scholar
  39. Murthy PS, Naidu MM (2010) Protease production by Aspergillus oryzae in solid-state fermentation utilizing coffee by-products. World Appl Sci J 8(2):199–205Google Scholar
  40. Navia PDP, RdJ VELASCOM, HOYOS C JL (2011) Production and evaluation of ethanol from coffee processing by-products. Vitae 18:287–294Google Scholar
  41. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37(1):52–68CrossRefGoogle Scholar
  42. O’Brien DJ, Senske GE, Kurantz MJ, Craig JC (2004) Ethanol recovery from corn fiber hydrolysate fermentations by pervaporation. Bioresour Technol 92(1):15–19CrossRefGoogle Scholar
  43. O’Brien D, Craig J Jr (1996) Ethanol production in a continuous fermentation/membrane pervaporation system. Appl Microbiol Biotechnol 44:699–704CrossRefGoogle Scholar
  44. Öhgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42(5):834–839CrossRefGoogle Scholar
  45. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33CrossRefGoogle Scholar
  46. Qureshi N, Blaschek H (1999a) Fouling studies of a pervaporation membrane with commercial fermentation media and fermentation broth of hyper-butanol-producing Clostridium beijerinckii BA101. Sep Sci Technol 34(14):2803–2815CrossRefGoogle Scholar
  47. Qureshi N, Blaschek HP (1999b) Production of Acetone Butanol Ethanol (ABE) by a Hyper-Producing Mutant Strain of Clostridium beijerinckii BA101 and Recovery by Pervaporation. Biotechnol Prog 15(4):594–602CrossRefGoogle Scholar
  48. Qureshi N, Meagher M, Huang J, Hutkins R (2001) Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187(1–2):93–102CrossRefGoogle Scholar
  49. Rehman M, Kim I, Kim KH, Han J-I (2014) Optimization of sono-assisted dilute sulfuric acid process for simultaneous pretreatment and saccharification of rice straw. Int J Environ Sci Technol 11(2):543–550CrossRefGoogle Scholar
  50. Shenoy D, Pai A, Vikas R, Neeraja H, Deeksha J, Nayak C, Rao CV (2011) A study on bioethanol production from cashew apple pulp and coffee pulp waste. Biomass Bioenerg 35(10):4107–4111CrossRefGoogle Scholar
  51. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651CrossRefGoogle Scholar
  52. Tang Y-Q, Koike Y, Liu K, An M-Z, Morimura S, Wu X-L, Kida K (2008) Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenerg 32(11):1037–1045CrossRefGoogle Scholar
  53. Tiwari S, Jadhav S, Tiwari K (2015) Bioethanol production from rice bran with optimization of parameters by Bacillus cereus strain McR-3. Int J Environ Sci Technol 12(12):3819–3826CrossRefGoogle Scholar
  54. Urbaneja G, Ferrer J, Paez G, Arenas L, Colina G (1996) Acid hydrolysis and carbohydrates characterization of coffee pulp. Renew Energy 9(1–4):1041–1044CrossRefGoogle Scholar
  55. Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80(6):603–629CrossRefGoogle Scholar
  56. Verhoef A, Degrève J, Huybrechs B, van Veen H, Pex P, Van der Bruggen B (2008) Simulation of a hybrid pervaporation–distillation process. Comput Chem Eng 32(6):1135–1146CrossRefGoogle Scholar
  57. Woldesenbet AG, Woldeyes B, Singh B (2014) Characteristics of Wet Coffee Processing Waste and Its Environmental Impact in Ethiopia. Int J Res Eng Sci (IJRES) 2(4):01–05Google Scholar
  58. Woldesenbet AG, Woldeyes B, Chandravanshi BS (2016) Bio-ethanol production from wet coffee processing waste in Ethiopia. SpringerPlus 5:1903CrossRefGoogle Scholar
  59. Yaqoob M, Mehmood S, Rehman M, Rashid N, Han J (2012) Optimization of dilute sulfuric acid pretreatment and enzymatic hydrolysis of industrial hemp (Cannabis sativa). Environ Process Eng 1:9–15Google Scholar
  60. Yi S, Wan Y (2017) Separation performance of novel vinyltriethoxysilane (VTES)-g-silicalite-1/PDMS/PAN thin-film composite membrane in the recovery of bioethanol from fermentation broths by pervaporation. J Membr Sci 524:132–140CrossRefGoogle Scholar
  61. Yi S, Qi B, Su Y, Wan Y (2015) Effects of fermentation by-products and inhibitors on pervaporative recovery of biofuels from fermentation broths with novel silane modified silicalite-1/PDMS/PAN thin film composite membrane. Chem Eng J 279:547–554CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • D. Dadi
    • 1
    • 2
  • A. Beyene
    • 1
  • K. Simoens
    • 2
  • J. Soares
    • 3
  • M. M. Demeke
    • 4
    • 5
  • J. M. Thevelein
    • 4
    • 5
  • K. Bernaerts
    • 2
  • P. Luis
    • 6
  • B. Van der Bruggen
    • 2
    • 7
  1. 1.Department of Environmental Health Sciences and TechnologyJimma UniversityJimmaEthiopia
  2. 2.Bio- and Chemical Systems Technology, Reactor Engineering and Safety Department of Chemical Engineering, Leuven Chem and TechKU LeuvenLouvainBelgium
  3. 3.Núcleo de Biotecnologia, Centro de Ciências da SaúdeUniversidade Federal do Espírito SantoVitóriaBrazil
  4. 4.Laboratory of Molecular Cell Biology, Institute of Botany and MicrobiologyKU LeuvenLeuven-HeverleeBelgium
  5. 5.Department of Molecular MicrobiologyVIBLeuven-HeverleeBelgium
  6. 6.Materials and Process Engineering (iMMC-IMAP)Université catholique de LouvainLouvain-La-NeuveBelgium
  7. 7.Faculty of Engineering and the Built EnvironmentTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations