Physical–chemical treatment process optimization for high polluting dairy effluents prior fermentation

  • M. KasmiEmail author
  • K. Djebali
  • M. Hamdi
  • I. Trabelsi
Original Paper


Among dairy effluents, bactofugate (B) and decreaming racking water (D) were identified as the most polluting due to their organic load content expressed in the chemical oxygen demand (156–240 g·L−1). Joining the plant wastewater, such effluents contribute to the increase of the polluting load of the wastewater treatment plant input which disturbs the treatment performance. This work proposes an upstream segregation of those dairy effluents for combined physical–chemical and biological treatment. An experimental design was proposed to investigate initial pH, applied temperature and exposure time factor effects on the thermal coagulation process. The fermentation of the resulted supernatants using Lactobacillus lactis ssp. lactis was performed. The optimized thermal coagulation pretreatment was obtained at (pH; T(°C); t(min)): 6, 60 °C and 5 min, with both (B) and (D) effluents. Resulted clarified whey sugar, protein and fat contents were assessed. The physical–chemical treatment resulted in considerable organic matter removal: 45% for (B) samples and 31% for (D) samples of proteins content and almost the total fat content. However, there is no considerable effect on the sugar content reduction, which remains responsible for the major fraction of the whey residual chemical oxygen demand (COD). Clarified whey fermentation using Lactococcus lactis ssp. lactis strain induced important sugar consumption rates. Therefore, important sugar consumption rates were recorded and the COD removal efficiency was improved. The recorded global COD removal efficiency was of about 93%. The proposed combined physical–chemical and biological processes for dairy effluents pretreatment allowed not only to reduce the effluents polluting load, but also to valorize wheys by producing valuable components.


COD removal Dairy wastewater Factorial design Lactococcus lactis Modeling Thermal coagulation 



The first author acknowledges all the technical staff of the Tunisian dairy industry “La Centrale Laitière du Cap Bon” for their cooperation during the period of study and the sample withdrawals.


  1. AFNOR (1971) Lait. Détermination de la teneur en lactose NF V 04-213Google Scholar
  2. AFNOR (1980) Lait. Détermination de la matière sèche. NF VO4 207. AFNOR, Paris: Normalisation françaiseGoogle Scholar
  3. AFNOR (2001) Lait—Détermination de la teneur en matière grasse—Méthode gravimétrique (méthode de référence). NF EN ISO 1211Google Scholar
  4. Alonso S, Herrero M, Rendueles M, Díaz M, (2010) Residual yoghurt whey for lactic acid production. Biomass Bioenerg 34:931–938CrossRefGoogle Scholar
  5. Alonso S, Herrero M, Rendueles M, Díaz M (2014) Physiological heterogeneity in Lactobacillus casei fermentations on residual yoghurt whey. Process Biochem 49:732–739CrossRefGoogle Scholar
  6. Belwarda K (2012) Statistical data. Centrale Laitière du Cap Bon, TunisiaGoogle Scholar
  7. Beszedes S, Szabo G, Géczi G (2012) Application of thermal and microwave pre-treatments for dairy wastewater sludge. Int J Eng 3:230–235Google Scholar
  8. Corrêa APF, Daroit DJ, Fontoura R, Meira SMM, Segalin J, Brandelli A (2014) Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides 61:48–55CrossRefGoogle Scholar
  9. Corredig M, Dalgleish DG (1996) Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk. Food Res Int 29:49–55CrossRefGoogle Scholar
  10. Deshayes CMP (1980) Utilisation de modèles mathématiques pour l’optimisation en fermentation. Bulletin de la Société Chimique de France 1:24–34Google Scholar
  11. Dimitrellou D, Kourkoutas Y, Banat IM, Marchant R, Koutinas AA (2007) Whey-cheese production using freeze–dried kefir culture as a starter. J Appl Microbiol 103:1170–1183CrossRefGoogle Scholar
  12. Fauquant J, Vieco E, Brule G, Maubois JL (1985) Clarification des lactosérums doux par agrégation thermocalcique de la matière grasse résiduelle. Lait 65:1–20CrossRefGoogle Scholar
  13. Fergala M (1995) The anaerobic treatment of complex wastewater. Ph.D. Thesis. Van Hall Institute, Groningen, NetherlandsGoogle Scholar
  14. FIL105-ISO488 (2008) Lait—Détermination de la teneur en matière grasse—Butyromètres GerberGoogle Scholar
  15. Gannoun H, Khelifi E, Bouallagui H, Touhami Y, Hamdi M (2008) Ecological clarification of cheese whey prior to anaerobic digestion in upflow anaerobic filter. Bioresour Technol 99:6105–6111CrossRefGoogle Scholar
  16. Gavala HN, Skiadas IV, Lyberatos G (1999) On the performance of a centralised digestion facility receiving seasonal agroindustrial wastewaters. Water Sci Technol 40:339–346Google Scholar
  17. Group WB (1999) Project Guidelines: Dairy Industry. In: Fleming C, Danczyk K and Hitchcock V (eds) Pollution Prevention and Abatement handbook, Toward Cleaner Production. World Bank Publications, Washington, pp 295–297Google Scholar
  18. Hadiyanto Ariyanti D, Aini AP, Pinundi DS (2014) Optimization of ethanol production from whey through fed-batch fermentation using Kluyveromyces marxianus. Energ Proc 47:108–112CrossRefGoogle Scholar
  19. Harta O, Iconomopoulou M, Bekatorou A, Nigam P, Kontominas M, Koutinas AA (2004) Effect of various carbohydrate substrates on the production of kefir grains for use as a novel baking starter. Food Chem 88:237–242CrossRefGoogle Scholar
  20. Kasmi M (2016) Biological processes as promoting way for both treatment and valorization of dairy industry effluents: a review. Waste Biomass Valor. doi: 10.1007/s12649-016-9795-9797 Google Scholar
  21. Kasmi M, Snoussi M, Dahmeni A, Ben Amor M, Hamdi M, Trabelsi I (2016) Use of thermal coagulation, separation, and fermentation processes for dairy wastewater treatment. Des Water Treat 57:13166–13174CrossRefGoogle Scholar
  22. Kasmi M, Hamdi M, Trabelsi I (2017) Eco-friendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse. Water Sci Technol 75:39–47CrossRefGoogle Scholar
  23. Kosseva MR (2011) Management and processing of food wastes. In: Moo-Young M (ed) Comprehensive biotechnology, environmental biotechnology and safety, vol 6. Elsevier, HobokenGoogle Scholar
  24. Kourkoutas Y, Xolias V, Kallis M, Bezirtzoglou E, Kanellaki M (2005) Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production. Process Biochem 40:411–416CrossRefGoogle Scholar
  25. Kourkoutas Y, Kandylis P, Panas P, Dooley JS, Nigam P, Koutinas AA (2006) Evaluation of freeze–dried kefir coculture as starter in feta-type cheese production. Appl Environ Microbiol 72:6124–6135CrossRefGoogle Scholar
  26. Li Y, Dalgleish D, Corredig M (2015) Influence of heating treatment and membrane concentration on the formation of soluble aggregates. Food Res Int 76:309–316CrossRefGoogle Scholar
  27. Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47:195–203CrossRefGoogle Scholar
  28. Moulin G, Ratomahenina R, Galzy P, Boze M (1976) Sélection de levure en vue de la culture sur lactosérum. Lait 56:135–142CrossRefGoogle Scholar
  29. Munavalli GR, Saler PS (2009) Treatment of dairy wastewater by water hyacinth. Water Sci Technol 59:713–722CrossRefGoogle Scholar
  30. Nasirahmadi S, Safekordi AA (2011) Whey as a substrate for generation of bioelectricity in microbial fuel cell using E. coli. Int J Environ Sci Technol 8:823–830CrossRefGoogle Scholar
  31. Oldfield DJ, Singh H, Taylor MW, Pearce KN (2000) Heat-induced interactions of β-lactoglobulin and α-lactalbumin with the casein micelle in pH-adjusted skim milk. Int Dairy J 10:509–518CrossRefGoogle Scholar
  32. Panesar PS, Kennedy JF, Gandhi DN, Bunko K (2007) Bioutilisation of whey for lactic acid production. Food Chem 105:1–14CrossRefGoogle Scholar
  33. Pescuma M, Hebert EM, Mozzi F, Font de Valdez G (2008) Whey fermentation by thermophilic lactic acid bacteria: evolution of carbohydrates and protein content. Food Microbiol 25:442–451CrossRefGoogle Scholar
  34. Prakash N, Garg A (2016) Comparative performance evaluation of physicochemical treatment processes for simulated dairy wastewater. Int J Environ Sci Technol 13:1–14CrossRefGoogle Scholar
  35. Rodier J, Legube B, Marlet N et al (2009) Détermination de la DCO (méthode à reflux en système ouvert). In: DUNOD (ed) L’Analyse de l’Eau, vol 9. DUNOD, Paris, pp 987–991Google Scholar
  36. Rombaut R, Dewettinck K (2007) Thermocalcic aggregation of milk fat globule membrane fragments from acid buttermilk cheese whey. J Dairy Sci 90:2665–2674CrossRefGoogle Scholar
  37. Ruchi S, Aradhana G, Kriti S (2013) Waste water management in dairy industry: pollution abatement and preventive attitudes. Paper presented at the Challenges & Opportunities for Technological Innovation in India (COTII), IndiaGoogle Scholar
  38. Rusten B, Lundar A, Eide O, Ødegaard H (1993) Chemical pretreatment of dairy wastewater. Water Sci Technol 28:67–76Google Scholar
  39. Saffon M, Britten M, Pouliot Y (2011) Thermal aggregation of whey proteins in the presence of buttermilk concentrate. J Food Eng 103:244–250CrossRefGoogle Scholar
  40. Samaržija D, Antunac N, Havranek JL (2001) Taxonomy, physiology and growth of Lactococcus lactis: a review. Mljekarstvo 51:35–48Google Scholar
  41. Seo YH, Park GW, Han JI (2015) Efficient lactulose production from cheese whey using sodium carbonate. Food Chem 173:1167–1171CrossRefGoogle Scholar
  42. Vidal G, Carvalho A, Méndez R, Lema JM (2000) Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresour Technol 74:231–239CrossRefGoogle Scholar
  43. Walstra P, Wouters JTM, Geurts TJ (1999) Dairy technology: principles of milk properties and processes, 2nd edn. CRC Press, Boca RaltonGoogle Scholar
  44. Xiao Y, Wang L, Rui X, Li W, Chen X, Jiang M, Dong M (2015) Enhancement of the antioxidant capacity of soy whey by fermentation with Lactobacillus plantarum B1–6. J Fun Food 12:33–44CrossRefGoogle Scholar
  45. Zall R (1992) Sources and composition of whey and permeate. Elsevier, LondonCrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  1. 1.Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Center of Water Researches and Technologies (CERTE)University of CarthageTunisTunisia
  2. 2.Espace d’Appui à la Recherche et Transfert Technologique (ARTT)University of CarthageTunisTunisia
  3. 3.Laboratoire d’Ecologie et de Technologie Microbienne (LETMI)Institut National des Sciences Appliquées et de Technologie (INSAT)Tunis CedexTunisia

Personalised recommendations