A review of the ecotoxicological effects of nanowires

  • J. I. Kwak
  • Y.-J. An


We briefly reviewed the existing research on the ecotoxicity of nanowires and suggested directions for further study. Nanowires are technological innovations that can benefit humans. However, it is important to consider the effects of nanowires on the environment. Only a few studies have reported acute and chronic ecological toxicity of nanowires on aquatic and terrestrial organisms, and limited research papers have reported antibacterial effects of nanowires. It is assumed that nanowires have a toxic mechanism similar to that of nanoparticles or ions, but the mechanism remains unknown because so little research has been conducted on the ecological toxicity of nanowires. More in-depth assessments of the chronic toxicity, bioavailability, cytotoxicity, and genotoxicity of nanowires on various species are needed.


Nanowires Nanowire array One-dimensional nanomaterials Ecotoxicity Toxicity 



This work was supported by the National Research Foundation Grant funded by the Korean Government (NRF 201361386). This study was also supported as a cooperation project for the 2014 Environmental Risk Assessment of Manufactured Nanomaterials funded by the Korea Institute of Toxicology (KIT, Korea).


  1. Adili A, Crowe S, Beaux MF, Cantrell T, Shapiro PJ, McIlroy DN, Gustin KE (2008) Differential cytotoxicity exhibited by silica nanowires and nanoparticles. Nanotoxicology 2:1–8. doi: 10.1080/17435390701843769 CrossRefGoogle Scholar
  2. Adolfsson K, Schneider M, Hammarin G, Häcker U, Prinz CN (2013) Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function. Nanotechnology 24:285101CrossRefGoogle Scholar
  3. Alexander FA Jr, Huey EG, Price DT, Bhansali S (2012) Real-time impedance analysis of silica nanowire toxicity on epithelial breast cancer cells. Analyst 137:5823–5828. doi: 10.1039/c2an36341k CrossRefGoogle Scholar
  4. Al-Hazmi F, Alnowaiser F, Al-Ghamdi AA, Al-Ghamdi AA, Aly MM, Al-Tuwirqi RM, El-Tantawy F (2012) A new large—scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattices Microstruct 52:200–209CrossRefGoogle Scholar
  5. An B-K, Gihm SH, Chung JW, Park CR, Kwon S-K, Park SY (2009) Color-tuned highly fluorescent organic nanowires/nanofabrics: easy massive fabrication and molecular structural origin. J Am Chem Soc 131:3950–3957CrossRefGoogle Scholar
  6. Artal MC, Holtz RD, Kummrow F, Alves OL, Umbuzeiro GDA (2013) The role of silver and vanadium release in the toxicity of silver vanadate nanowires toward Daphnia similis. Environ Toxicol Chem 32(908–91):2. doi: 10.1002/etc.2128 Google Scholar
  7. Brammer KS, Choi C, Oh S, Cobb CJ, Connelly LS, Loya M, Kong SD, Jin S (2009) Antibiofouling, sustained antibiotic release by Si nanowire templates. Nano Lett 9:3570–3574. doi: 10.1021/nl901769m CrossRefGoogle Scholar
  8. Chen Z, Qin Y, Weng D, Ciao Q, Peng Y, Wang X, Li H, Wei F, Lu Y (2009) Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv Funct Mater 19:3420–3426. doi: 10.1002/adfm.200900971 CrossRefGoogle Scholar
  9. Davoudi ZM, Kandjani AE, Bhatt AI, Kyratzis IL, O’Mullane AP, Bansal V (2014) Hybrid antibacterial fabrics with extremely high aspect ratio Ag/AgTCNQ nanowires. Adv Funct Mater 24:1047–1053. doi: 10.1002/adfm.201302368 CrossRefGoogle Scholar
  10. Fellahi O, Sarma RK, Das MR, Saikia R, Marcon L, Coffinier Y, Hadjersi T, Maamache M, Boukherroub R (2013) The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles. Nanotechnology 24:495101CrossRefGoogle Scholar
  11. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087. doi: 10.1021/nl100161z CrossRefGoogle Scholar
  12. George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759. doi: 10.1021/nn204671v CrossRefGoogle Scholar
  13. Hamilton R, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35CrossRefGoogle Scholar
  14. Hassan MS, Amna T, Pandeya D, Hamza AM, Bing Y, Kim H-C, Khil M-S (2012) Controlled synthesis of Mn2O3 nanowires by hydrothermal method and their bactericidal and cytotoxic impact: a promising future material. Appl Microbiol Biotechnol 95:213–222. doi: 10.1007/s00253-012-3878-6 CrossRefGoogle Scholar
  15. Holtz RD, Filho AGS, Brocchi M, Martins D, Durán N, Alves OL (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102CrossRefGoogle Scholar
  16. Holtz RD, Lima BA, Souza Filho AG, Brocchi M, Alves OL (2012) Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed Nanotechnol Biol Med 8:935–940. doi: 10.1016/j.nano.2011.11.012 CrossRefGoogle Scholar
  17. Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, George S, Xia T, Nel AE, Zink JI (2012) Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6:5366–5380. doi: 10.1021/nn3012114 CrossRefGoogle Scholar
  18. Jia Y, Luo T, Yu X-Y, Sun B, Liu J-H, Huang X-J (2013) A facile template free solution approach for the synthesis of dypingite nanowires and subsequent decomposition to nanoporous MgO nanowires with excellent arsenate adsorption properties. RSC Adv 3:5430–5437. doi: 10.1039/C3RA23340E CrossRefGoogle Scholar
  19. Jiang Y, Gang J, Xu S-Y (2012) Contact mechanism of the Ag-doped trimolybdate nanowire as an antimicrobial agent. Nano-Micro Lett 4:228–234. doi: 10.3786/nml.v4i4.p228-234 CrossRefGoogle Scholar
  20. Johansson F, Jonsson M, Alm K, Kanje M (2010) Cell guidance by magnetic nanowires. Exp Cell Res 316:688–694. doi: 10.1016/j.yexcr.2009.12.016 CrossRefGoogle Scholar
  21. Julien DC, Richardson CC, Beaux MF 2nd, McIlroy DN, Hill RA (2010) In vitro proliferating cell models to study cytotoxicity of silica nanowires. Nanomedicine 6:84–92. doi: 10.1016/j.nano.2009.03.003 CrossRefGoogle Scholar
  22. Kılıç B, Omay D (2014) In-situ deposition of zinc oxide nanowires onto UV-cured chitin derivatives and their antibacterial properties. Mater Sci Semicond Process 20:35–40. doi: 10.1016/j.mssp.2013.12.012 CrossRefGoogle Scholar
  23. Kim MJ, Shin S (2014) Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem Toxicol 67:80–86. doi: 10.1016/j.fct.2014.02.006 CrossRefGoogle Scholar
  24. Kumar S, Ojha AK (2013) Synthesis, characterizations and antimicrobial activities of well dispersed ultra-long CdO nanowires. AIP Adv 3:052109. doi: 10.1063/1.4804930 CrossRefGoogle Scholar
  25. Li Z, Yang R, Yu M, Bai F, Li C, Wang ZL (2008) Cellular level biocompatibility and biosafety of ZnO nanowires. J Phys Chem C 112:20114–20117. doi: 10.1021/jp808878p CrossRefGoogle Scholar
  26. Li Y-Q, Zhu B, Li Y, Leow WR, Goh R, Ma B, Fong E, Tang M, Chen X (2014) A synergistic capture strategy for enhanced detection and elimination of bacteria. Angew Chem Int Ed 53:1–6. doi: 10.1002/ange.201310135 CrossRefGoogle Scholar
  27. Liu L, He C, Li J, Guo J, Yang D, Wei J (2013) Green synthesis of silver nanowires via ultraviolet irradiation catalyzed by phosphomolybdic acid and their antibacterial properties. New J Chem 37:2179–2185. doi: 10.1039/C3NJ00135K CrossRefGoogle Scholar
  28. Luo L, Jie J, Zhang W, He Z, Wang J, Yuan G, Zhang W, Wu LCM, Lee S-T (2009) Silicon nanowire sensors for Hg2+ and Cd2+ ions. Appl Phys Lett 94:193101–193101–193101–193103. doi: 10.1063/1.3120281 Google Scholar
  29. Lv M, Su S, He Y, Huang Q, Hu W, Li D, Fan C, Lee S-T (2010) Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv Mater 22:5463–5467. doi: 10.1002/adma.201001934 CrossRefGoogle Scholar
  30. Mu Shi, Chang JC, Lee S-T (2007) Silicon nanowires-based fluorescence sensor for Cu(II). Nano Lett 8:104–109. doi: 10.1021/nl072164k CrossRefGoogle Scholar
  31. Müller KH, Lulkarni J, Motskin M, Goode A, Winship P, Skepper JN, Ryan MP, Porter AE (2010) pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano 4:6767–6779. doi: 10.1021/nn101192z CrossRefGoogle Scholar
  32. Mwangi JN, Wang N, Ritts A, Kunz JL, Ingersoll CG, Li H, Deng B (2011) Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures. Environ Toxicol Chem 30:981–987. doi: 10.1002/etc.467 CrossRefGoogle Scholar
  33. Nataraj N, Anjusree GS, Madhavan AA, Priyanka P, Sankar D, Nisha N, Lakshmi SV, Jayakumar R, Balakrishnan A, Biswas R (2014) Synthesis and anti-staphylococcal activity of TiO2 nanoparticles and nanowires in ex vivo porcine skin model. J Biomed Nanotechnol 10:864–870. doi: 10.1166/jbn.2014.1756 CrossRefGoogle Scholar
  34. Nelson SM, Mahmoud T, Beaux Ii M, Shapiro P, McIlroy DN, Stenkamp DL (2010) Toxic and teratogenic silica nanowires in developing vertebrate embryos. Nanomed Nanotechnol Biol Med 6:93–102. doi: 10.1016/j.nano.2009.05.003 CrossRefGoogle Scholar
  35. Park E-J, Shim H-W, Lee G-H, Kim J-H, Kim D-W (2013) Comparison of toxicity between the different-type TiO2 nanowires in vivo and in vitro. Arch Toxicol 87:1219–1230. doi: 10.1007/s00204-013-1019-3 CrossRefGoogle Scholar
  36. Poland CA, Byrne F, Cho W-S, Prina-Mello A, Murphy FA, Davies GL, Coey JMD, Gounko Y, Duffin R, Volkov Y, Donaldson K (2012) Length-dependent pathogenic effects of nickel nanowires in the lungs and the peritoneal cavity. Nanotoxicology 6:899–911. doi: 10.3109/17435390.2011.626535 CrossRefGoogle Scholar
  37. Safi M, Yan M, Guedeau-Boudeville M-A, Conjeaud H, Garnier-Thibaud V, Boggetto N, Baeza-Squiban A, Niedergang F, Averbeck D, Berret J-F (2011) Interactions between magnetic nanowires and living cells: uptake, toxicity, and degradation. ACS Nano 5:5354–5364. doi: 10.1021/nn201121e CrossRefGoogle Scholar
  38. Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, Nowinski DT, Luong P, Tran C, Karunaratne N, Pham D, Lin XX, Falciani F, Higgns CP, Ranville JF, Vulpe CD, Gilert B (2013) Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 7:10681–10694. doi: 10.1021/nn4034103 CrossRefGoogle Scholar
  39. Schinwald A, Chernova T, Donaldson K (2012) Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 9:34CrossRefGoogle Scholar
  40. Schoen DT, Schoen AP, Hu L, Kim HS, Heilshorn SC, Cui Y (2010) High speed water sterilization using one-dimensional nanostructures. Nano Lett 10:3628–3632. doi: 10.1021/nl101944e CrossRefGoogle Scholar
  41. Shang L, Li B, Dong W, Chen B, Li C, Tang W, Wang G, Wu J, Ying Y (2010) Heteronanostructure of Ag particle on titanate nanowire membrane with enhanced photocatalytic properties and bactericidal activities. J Hazard Mater 178:1109–1114. doi: 10.1016/j.jhazmat.2010.01.093 CrossRefGoogle Scholar
  42. Shingubara S, Okino O, Sayama Y, Sakaue H, Takahagi T (1997) Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum. Jpn J Appl Phys 36:7791–7795CrossRefGoogle Scholar
  43. Singh M, Movia D, Mahfoud OK, Volkov Y, Prina-Mello A (2013) Silver nanowires as prospective carriers for drug delivery in cancer treatment: an in vitro biocompatibility study on lung adenocarcinoma cells and fibroblasts. Eur J Nanomed 5(4):195–204CrossRefGoogle Scholar
  44. Singh A, Dutta DP, Ballal A, Tyagi AK, Fulekar MH (2014) Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires. Mater Res Bull 51:447–454. doi: 10.1016/j.materresbull.2014.01.001 CrossRefGoogle Scholar
  45. Song MM, Song WJ, Bi H, Wang J, Wu WL, Sun J, Yu M (2010) Cytotoxicity and cellular uptake of iron nanowires. Biomaterials 31:1509–1517. doi: 10.1016/j.biomaterials.2009.11.034 CrossRefGoogle Scholar
  46. Song MM, Song WJ, Bi H, Wang J, Wu WL, Sun J, Yu M (2011) Cytotoxic potentials of tellurium nanowires in BALB/3T3 fibroblast cells. Bull Korean Chem Soc 32(9):3405–3410. doi: 10.5012/bkcs.2011.32.9.3405 CrossRefGoogle Scholar
  47. Stoehr L, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh G (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8:36CrossRefGoogle Scholar
  48. Tamboli MS, Kulkarni MV, Patil RH, Gade WN, Navale SC, Kale BB (2012) Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B 92:35–41. doi: 10.1016/j.colsurfb.2011.11.006 CrossRefGoogle Scholar
  49. Tang C, Sun W, Lu J, Yan W (2014) Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property. J Colloid Interface Sci 416:86–94. doi: 10.1016/j.jcis.2013.10.036 CrossRefGoogle Scholar
  50. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803. doi: 10.1016/j.pmatsci.2011.08.003 CrossRefGoogle Scholar
  51. Verma NK, Conroy J, Loyons PE, Coleman J, O’Sullivan MP, Kornfeld H, Kelleher D, Volkov Y (2012) Autophagy induction by silver nanowires: a new aspect in the biocompatibility assessment of nanocomposite thin films. Toxicol Appl Pharmacol 264:451–461. doi: 10.1016/j.taap.2012.08.023 CrossRefGoogle Scholar
  52. Visnapuu M, Joost U, Juganson K, Künnis-Beres K, Kahru A, Kisand V, Ivask A (2013) Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli. BioMed Res Intern 2013:1–9. doi: 10.1155/2013/819252 CrossRefGoogle Scholar
  53. Wang X, Yang F, Yang W, Yang X (2007) A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem Commun 14(42):4419–4421. doi: 10.1039/B708662H CrossRefGoogle Scholar
  54. Wang H, Wang L, Zhang P, Yuan L, Yu Q, Chen H (2011) High antibacterial efficiency of pDMAEMA modified silicon nanowire arrays. Colloids Surf B 83:355–359. doi: 10.1016/j.colsurfb.2010.12.009 CrossRefGoogle Scholar
  55. Wu C, Shen L, Huang Q, Zhang Y-C (2011) Synthesis of Na-doped ZnO nanowires and their antibacterial properties. Powder Technol 205:137–142. doi: 10.1016/j.powtec.2010.09.003 CrossRefGoogle Scholar
  56. Xie W, Xie Q, Jin M, Huang X, Zhang X, Shao Z, Wen G (2014) The β-SiC nanowires induce apoptosis via oxidative stress in mouse osteoblastic cell line MC3T3-E1 BioMed Res Intern 2014:1–9Google Scholar
  57. Youssef AM, Malhat FM (2014) Selective removal of heavy metals from drinking water using titanium dioxide nanowire. Macromol Symp 337:96–101. doi: 10.1002/masy.201450311 CrossRefGoogle Scholar
  58. Zhang D, Wan Y, Li G, Zhang J, Li H (2007) Synthesis of silver nanowire/mesoporous silica composite as a highly active antiseptic. In: Zhao D, Qiu S, Tnag Y, Yu C (eds) Studies in surface science and catalysis, vol 165. Elsevier, Amsterdam, pp 841–846. doi: 10.1016/S0167-2991(07)80450-2 Google Scholar
  59. Zhang Q, Tan Y, Xie J, Lee J (2009) Colloidal synthesis of plasmonic metallic nanoparticles. Plasmonics 4:9–22. doi: 10.1007/s11468-008-9067-x CrossRefGoogle Scholar
  60. Zhang W, Tong L, Yang C (2012) Cellular binding and internalization of functionalized silicon nanowires. Nano Lett 12:1002–1006. doi: 10.1021/nl204131n CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2014

Authors and Affiliations

  1. 1.Department of Environmental ScienceKonkuk UniversitySeoulSouth Korea

Personalised recommendations