The potential of carbon dioxide emission reductions in German commercial transport by electric vehicles

Abstract

Climate change is a serious challenge of today. In order to reach the ambiguous mitigation scenarios for greenhouse gases, strong efforts are to be undertaken. Electric vehicles are seen as a potential mean to reduce emissions and energy import dependencies of most western societies. So far, the progress toward more electric vehicles in individual passenger transport is still slow. The objective to increase the share of electric vehicles of many national governments seems to be rather ambitious. In commercial transport, mileage is usually higher, trips are planned more precisely, and driving patterns are more regular than those of private vehicles. With these and other promising factors, we assume a high potential of electric vehicles in commercial transport. Therefore, we analyze in this paper the commercial transport in Germany and especially the large share of light commercial vehicles in order to make these potentials explicit. Based on German survey data, we analyze the heterogeneous German economic sectors with top-down statistical values like daily distance categories and bottom-up values like driving and parking behaviors. By way of example, German postal services are evaluated in detail, which leads to an electrification potential of between 60,750 and 105,550 vehicles. In case of “green” electricity for charging, postal services can avoid up to 882,000 \({\text{t}}_{{{\text{CO}}_{ 2} }} /{\text{a}}\), which is about 40–70 %.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Light commercial vehicles are defined excluding passenger cars. Light duty vehicles (LDV) include both LCV and passenger cars.

  2. 2.

    We use “postal services” for all delivery services such as courier, parcel, express, and postal services.

  3. 3.

    Many privately owned vehicles are used for commercial purposes vice versa.

  4. 4.

    Transportation and storage (H) includes commercial passenger transport, transport of goods, postal services, and storage activities.

  5. 5.

    The survey data are available in different data formats. We use the SPSS files and the SPSS software for evaluation.

  6. 6.

    One hundred and fifty kilometers is chosen here for being a range that can be reached by some current BEV, e.g., Smart E-Drive and Citroen C-Zero.

  7. 7.

    Professional, scientific, and technical activities (M) include legal advice, tax consulting, accountant activities, consulting activities, architects, research and development activities, market research and advertising, and other freelance work.

  8. 8.

    In Germany, household sockets have a (theoretical) maximum power of 3.7 kW based on 16 A/230 V, which leads to about 7.5 h for a fully charge of a battery capacity of 27 kWh.

  9. 9.

    With a fast charging system (22 kW, mode 3 AC charging), about 75 min is needed for full charging.

  10. 10.

    No intersection is given by subtracting the single values by 100 %.

  11. 11.

    Annual mileages of single vehicles cannot be calculated properly. They are calculated based on the 1 day survey.

References

  1. Abt D (1998) Die Erklärung der Technikgenese des Elektroautomobils. Dissertation, University of Frankfurt (Main), Germany

  2. Al-Alawi BM, Bradley TH (2013) Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles. Appl Energ 103:488–506. doi:10.1016/j.apenergy.2012.10.009

    Article  Google Scholar 

  3. Alam JB, Wadud Z, Polak W (2013) Energy demand and economic consequences of transport policy. Int J Environ Sci Technol 10:1075–1082. doi:10.1007/s13762-013-0240-1

    Article  Google Scholar 

  4. Amjad S, Neelakrishnan S, Rudramoorthy R (2010) Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles. Renew Sustain Energ Rev 14:1104–1110. doi:10.1016/j.rser.2009.11.001

    Article  Google Scholar 

  5. B.A.U.M. (2012) Ergebnisbericht zum Förderprogramm IKT für Elektromobilität. German Federal Ministry of Economics and Technology, Berlin, Germany

    Google Scholar 

  6. BBSR (2011) Laufende Raumbeobachtung – Raumabgrenzungen. German Federal Institute for Research on Building, Urban Affairs and Spatial Development, Berlin, Germany

    Google Scholar 

  7. Berg MR (1985) The potential market for electric vehicles: results from a national survey of commercial fleet operators. Transport Res Rec 1049:70–78

    Google Scholar 

  8. Bertoldi P, Rezessy S, Anable J, Jochem P, Oikonomou V (2011) Energy saving obligations and white certificates: ideas and considerations for the transport sector. Int J Sustain Transp 5(6):345–374. doi:10.1080/15568318.2010.545472

    Article  Google Scholar 

  9. BMVBS (2011a) Ergebnisbericht 2011 der Modellregionen Elektromobilität. German Federal Ministry of Transport, Building and Urban Development, Berlin, Germany

    Google Scholar 

  10. BMVBS (2011b) Verkehr in Zahlen 2010/2011. German Federal Ministry of Transport, Building and Urban Development, Berlin, Germany

    Google Scholar 

  11. BMWi (2008) Dienstleistungsverkehr in industriellen Wertschöpfungsketten—final report. German Federal Ministry of Economics and Technology, Berlin, Germany

    Google Scholar 

  12. BMWi (2012) Regierungsprogramm Elektromobilität – Übersicht zu umgesetzten oder initiierten Maßnahmen. German Federal Ministry of Economics and Technology, Berlin, Germany

    Google Scholar 

  13. Brauner G, Geringer B, Schrödl M (2012) Forschungsbedarf für das Elektrofahrzeug der Zukunft. e & i. Elektrotechnik und Informationstechnik 129:110–117. doi:10.1007/s00502-012-0088-y

    Article  Google Scholar 

  14. Daimler (2013) Verbrauchs- und Emissionswerte des Vito 110 CDI. http://www.mercedes-benz.de. Accessed 5 December 2013

  15. DATELINE (2004) Design and application of a travel survey for European long-distance trips based on an international network of expertise (dateline). Institute for Transport Planning and Systems, Zurich, Switzerland

    Google Scholar 

  16. Deneke K (2004) Nutzungsorientierte Fahrzeugkategorien im Straßenwirtschaftsverkehr – Eine multidimensionale Analyse kraftfahrzeugbezogener Mobilitätsstrukturen. Dissertation, Technical University of Braunschweig, Germany

  17. Destatis (2008) Klassifikation der Wirtschaftszweige. German Federal Statistical Office, Wiesbaden, Germany

    Google Scholar 

  18. Ensslen A, Jochem P, Schäuble J, Babrowski S, Fichtner W (2013) User acceptance of electric vehicles in the French-German transnational context. In: Selected proceedings of the 13th WCTR, Rio de Janeiro, Brazil 15–18 July

  19. European Commission (2011) A Roadmap for moving to a competitive low carbon economy in 2050. European Commission, Brussels

    Google Scholar 

  20. European Commission (2012) EU transport in figures—statistical pocketbook 2012. European Commission, Luxembourg

    Google Scholar 

  21. Eurostat (2008) NACE Rev. 2—statistical classification of economic activities in the European Community. European Commission, Brussels, Belgium

  22. Eurostat (2012) Energy statistics—prices. European Commission, Brussels

    Google Scholar 

  23. Eurostat (2013) Greenhouse gas emissions by sector. European Commission, Brussels

    Google Scholar 

  24. Feng W, Figliozzi MA (2012) Conventional vs. electric commercial vehicle fleets: a case study of economic and technological factors affecting the competitiveness of electric commercial vehicles in the USA. Procedia Soc Behav Sci 39:702–711. doi:10.1016/j.sbspro.2012.03.141

    Article  Google Scholar 

  25. Figliozzi MA, Boudart JA, Feng W (2011) Economic and environmental optimization of vehicle fleets. Transp Res Rec 2252:1–6. doi:10.3141/2252-01

    Article  Google Scholar 

  26. German Federal Government (2009) Nationaler Entwicklungsplan Elektromobilität der Bundesregierung. German Federal Government, Berlin

    Google Scholar 

  27. German Federal Government (2010) Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. German Federal Government, Berlin

    Google Scholar 

  28. Gnann T, Haag M, Plötz P, Wietschel M (2013) Market potential for electric vehicles in the German commercial passenger transport sector. In: Proceedings of EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain 17–20 November

  29. Hacker F, Harthan R, Hermann H, Kasten P, Loreck C, Seebach D, Timpe C, Zimmer W, Leppler S, Möck A (2011) Betrachtung der Umweltentlastungspotenziale durch den verstärkten Einsatz von kleinen, batterieelektrischen Fahrzeugen im Rahmen des Projekts ’E-Mobility’ – Schlussbericht. Oeko-Institut e.V., German Federal Ministry of Transport, Building and Urban Development, Freiburg and Berlin, Germany

  30. Hautzinger H, Stock W, Mayer K, Schmidt J, Heidemann D (2005) Fahrleistungserhebung 2002 – Inländerfahrleistung. Wirtschaftsverlag NW, Bremen

    Google Scholar 

  31. Hebes P (2011) Die Rolle von Unternehmen beim Verkehrsverhalten im Personenwirtschaftsverkehr. Dissertation, Humbold University of Berlin, Germany

  32. Heinrichs HU (2013) Analyse der langfristigen Auswirkungen von Elektromobilität auf das deutsche Energiesystem im europäischen Energieverbund. KIT Scientific Publishing, Karlsruhe

    Google Scholar 

  33. Hu PS, Reuscher TR (2004) Summary of travel trends—2001 national household travel survey. http://nhts.ornl.gov/2001/pub/STT.pdf. Accessed 25 March 2013

  34. ICCT (2013) Reducing CO2 and fuel consumption: a summary of the technology potential for new cars in the EU, International Council on Clean Transportation

  35. IEA (2009) Technology roadmap: electric and plug-in hybrid electric vehicles. International Energy Agency, Paris

    Google Scholar 

  36. IEA (2011) Technology roadmap—electric and plug-in hybrid electric vehicles. International Energy Agency, Paris

    Google Scholar 

  37. IEA (2013) World energy outlook 2013, international energy agency. France, Paris

    Book  Google Scholar 

  38. IKA (2012) CO2-Reduzierungspotenziale bei Pkw bis 2020. Institut für Kraftfahrzeuge, Strategie und Beratung, RWTH Aachen University, Germany

    Google Scholar 

  39. Kaschub T, Paetz AG, Jochem P, Fichtner W (2012) Feasibility of battery switch stations for local emission free public transport. In: ENERDAY 7th Conference on Energy Economics and Technology, Dresden, Germany

  40. Kay D, Hill N, Newman D (2013) Powering Ahead—The future of low-carbon cars and fuels. UK Petroleum Industry Association. http://www.theengineer.co.uk/Journals/2013/04/22/i/k/h/powering_ahead-kay_et_al-apr.2013-embargoed_copy.pdf. Accessed 30 November 2013

  41. KBA (2010) Verkehr deutscher Lastkraftfahrzeuge (VD) – Güterbeförderung. German Federal Motor Transport Authority, Flensburg, Germany

    Google Scholar 

  42. KBA (2011) Fahrzeugzulassungen (FZ) – Bestand an Kraftfahrzeugen und Kraftfahrzeuganhängern nach Haltern und Wirtschaftszweigen. German Federal Motor Transport Authority, Flensburg, Germany

    Google Scholar 

  43. KBA (2013) Der Fahrzeugbestand im Überblick am 1. Januar 2013 gegenüber 1. Januar, 2012. German Federal Motor Transport Authority, Flensburg, Germany

    Google Scholar 

  44. KiD (2003) Kraftfahrzeugverkehr in Deutschland—KiD 2002—final report. German Federal Motor Transport Authority, Flensburg, Germany

    Google Scholar 

  45. KiD (2012a) Kraftfahrzeugverkehr in Deutschland 2010—KiD 2010—final report. German Federal Ministry of Transport, Building and Urban Development, Berlin, Germany

    Google Scholar 

  46. KiD (2012b) Kraftfahrzeugverkehr in Deutschland 2010—KiD 2010—Ergebnisse im Überblick. German Federal Motor Transport Authority, Flensburg, Germany

    Google Scholar 

  47. Kley F (2011) Ladeinfrastrukturen für Elektrofahrzeuge – Entwicklung und Bewertung einer Ausbaustrategie auf Basis des Fahrverhaltens. Dissertation. Karlsruhe Institute of Technology, Germany

  48. Köhler U (2009) Applications–transportation–hybrid electric vehicles: batteries. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 269–285

  49. Liao CH, Chang CL, Su CY, Chiueh PT (2013) Correlation between land-use change and greenhouse gas emissions in urban areas. Int J Environ Sci Techno. 10:1275–1286. doi:10.1007/s13762-012-0155-2

    CAS  Article  Google Scholar 

  50. Ligterink NE, Smokers RTM, Bolech M (2013) Fuel-electricity mix and efficiency in Dutch plug-in and range-extender vehicles on the road. In: Proceedings of EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain 17–20 November

  51. Machledt-Michael S (2000) Fahrtenkettenmodell für den städtischen und regionalen Wirtschaftsverkehr, Dissertation, Technical University of Braunschweig, Germany

  52. Madre JL, Kuhnimhof T, Armoogum J, Last J, Sender, F (2007) Deliverable d3 existence and comparability of data sources. Institut National de Recherche sur les Transports et leur Securite and STRATA GmbH – Data and Information Management, Paris and Karlsruhe, France and Germany

  53. Menge J (2011) Personenwirtschaftsverkehr im Prozess der Dienstleistungserstellung -Ursachen, Strukturen und räumliche Muster. Dissertation, Humbold University of Berlin, Germany

  54. MiD (2010) Mobilität in Deutschland 2008 – Kurzbericht – Struktur – Aufkommen – -Emissionen – Trends. German Federal Ministry of Transport, Building and Urban Development, Berlin, Germany

    Google Scholar 

  55. Mock P (2010) Entwicklung eines Szenariomodells zur Simulation der zukünftigen Marktanteile und CO2-Emissionen von Kraftfahrzeugen (VECTOR21). Dissertation, University of Stuttgart, Germany

  56. NIST (2009) Nist framework and roadmap for smart grid interoperability standards. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  57. NPE (2010) Zwischenbericht der Nationalen Plattform Elektromobilität. National Platform for Electromobility, Berlin

    Google Scholar 

  58. NPE (2011) Zweiter Bericht der Nationalen Plattform Elektromobilität. National Platform for Electromobility, Berlin

    Google Scholar 

  59. NPE (2012) Fortschrittsbericht der Nationalen Plattform Elektromobilität (Dritter Bericht). National Platform for Electromobility, Berlin

    Google Scholar 

  60. OECD (2012) Transport outlook 2012. Organization for Economic Co-operation and Development, Paris

    Book  Google Scholar 

  61. Paetz AG, Kaschub T, Kopp M, Jochem P, Fichtner W (2013) Monetäre Anreize zur Steuerung der Ladelast von Elektrofahrzeugen – eine modellgestützte Optimierung. Zeitschrift für Energiewirtschaft 37:1–12. doi:10.1007/s12398-012-0095-z

    Article  Google Scholar 

  62. Parker C (2009) Batteries—codes and standards. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 539–543

  63. Pehnt M, Helms H, Lambrecht U, Dallinger D, Wietschel M, Heinrichs H, Kohrs R, Link J, Trommer S, Pollok T, Behrens P (2011) Elektroautos in einer von erneuerbaren Energien geprägten Energiewirtschaft. Zeitschrift für Energiewirtschaft 35:221–234. doi:10.1007/s12398-011-0056-y

    Article  Google Scholar 

  64. Pfahl S, Jochem P, Fichtner W (2013) When will Electric Vehicles Capture the German Market? And Why? In: Proceedings of EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain 17–20 November

  65. Plötz P, Gnann T, Wietschel M (2012) Total ownership cost projection for the German electric vehicle market with implications for its future power and electricity demand. In: ENERDAY 7th Conference on Energy Economics and Technology, Dresden, Germany 27 April

  66. Pregger T, Tena DL, O’Sullivan M, Roloff N, Schmid S, Propfe B, Hülsebusch D, Wille-Haussmann B, Schwunk S, Wittwer C, Pollok T, Krahl S, Moormann A (2012) Perspektiven von Elektro-/Hybridfahrzeugen in einem Versorgungssystem mit hohem Anteil dezentraler und erneuerbarer Energiequellen. German Federal Ministry of Economics and Technology, Berlin

    Google Scholar 

  67. Proff H, Kilian D (2012) Competitiveness of the EU automotive industry in electric vehicles. University of Duisburg-Essen, Duisburg

    Google Scholar 

  68. RITA (2010) Freight transportation: global highlights 2010. US Department of Transportation, Washington

    Google Scholar 

  69. Santos A, McGuckin N, Nakamoto HY, Gray D, Liss S (2011) Summary of travel trends—2009 national household travel survey. US Department of Transportation, Washington

    Google Scholar 

  70. Schütte FP (1995) Mobilitätsprofile im städtischen Personenwirtschaftsverkehr. Dissertation, University of Dortmund, Germany

  71. Schwerdtfeger W (1976) Städtischer Lieferverkehr: Bestimmungsgründe, Umfang und Ablauf des Lieferverkehrs von Einzelhandels- und Dienstleistungsbetrieben. Dissertation, Technical University Braunschweig. Germany

  72. Sharma R, Manzie C, Bessede M, Brear MJ, Crawford RH (2012) Conventional, hybrid and electric vehicles for australian driving conditions—part 1: technical and financial analysis. Transport Res C Emerg 25:238–249. doi:10.1016/j.trc.2012.06.003

    Article  Google Scholar 

  73. Steinmeyer I (2004) Zur Datenlage und Notwendigkeit der Modellierung von Wirtschaftsverkehr in Städten und Regionen. In: 1. Europäisches Kommunalpolitisches Verkehrsforum – Wirtschaftsverkehr in Städten – Wege aus der Krise. German Association of Transport Sciences, Berlin, Germany

  74. UBA (2013) Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 bis 2012. Federal Environment Agency, Dessau-Roßlau

    Google Scholar 

  75. UN (1998) The kyoto protocol to the United Nations framework convention on climate change (UNCCC). United Nations, Kyoto

    Google Scholar 

  76. UN (2008) International standard industrial classification of all economic activities (isic) Rev. 4. United Nations, New York, USA

  77. Uslar M, Beenken P, Busemann C, Gonzáles JM, Kamenik J, Mayer C, Niesse A, Rohjans S, Schmedes T, Specht M, Weidelt T, Schwarz K, Hein F (2009) Untersuchung des Normungsumfeldes zum BMWi-Förderschwerpunkt ”e-Energy – IKT-basiertes Energiesystem der Zukunft”. German Federal Ministry of Economics and Technology, Berlin

    Google Scholar 

  78. Uslar M, Rohjans S, Gonzalez J, Specht M, Trefke J (2011) Das Standardisierungsumfeld im Smart Grid – Roadmap und Outlook. e&i. Elektrotechnik und Informationstechnik 128:135–140. doi:10.1007/s00502-011-0818-6

    Article  Google Scholar 

  79. van Dender K (2009) Energy policy in transport and transport policy. Energ Policy 37:3854–3862. doi:10.1016/j.enpol.2009.07.008

    Article  Google Scholar 

  80. van Vliet O, Brouwer AS, Kuramochi T, van den Broek M, Faaij A (2011) Energy use; cost and CO2 emissions of electric cars. J Power Sources 196:2298–2310. doi:10.1016/j.jpowsour.2010.09.119

    Article  Google Scholar 

  81. Wairaich RA, Galus MD, Dobler C, Balmer M, Andersson G, Axhausen KW (2013) Plug-in hybrid electric vehicles and smart grids: investigations based on a microsimulation. Transport Res C Emerg 28:74–86. doi:10.1016/j.trc.2012.10.011

    Article  Google Scholar 

  82. Walvekar PP, Gurjar BR (2012) Formulation, application and evaluation of a stack emission model for coal-based power stations. Int J Environ Sci Technol. doi:10.1007/s13762-012-0131-x

    Google Scholar 

  83. Wermuth M (2006) Der Wirtschaftsverkehr auf Deutschlands Straßen – Stimmen unsere bisherigen Vermutungen? Straßenverkehrstechnik 50:5–14

    Google Scholar 

  84. WTO (2012) International trade statistics 2012. World Trade Organization, Geneva

    Google Scholar 

  85. Zumkeller D, Kagerbauer M, Streit T, Vortisch P, Chlond B, Wirtz M (2011) Deutsches Mobilitätspanel (MOP) wissenschaftliche Begleitung und erste Auswertungen – Bericht 2011: Alltagsmobilität & Tankbuch. Karlsruhe Institute of Technology, Karlsruhe

    Google Scholar 

Download references

Acknowledgments

This research is part of the project iZEUS (01ME12013) which is funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Ketelaer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ketelaer, T., Kaschub, T., Jochem, P. et al. The potential of carbon dioxide emission reductions in German commercial transport by electric vehicles. Int. J. Environ. Sci. Technol. 11, 2169–2184 (2014). https://doi.org/10.1007/s13762-014-0631-y

Download citation

Keywords

  • Emission reduction potential
  • Electric mobility
  • Commercial transport in Germany
  • Sectoral analysis
  • Postal services