Skip to main content
Log in

An experimental study on charge optimization of a trans-critical CO2 cycle

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The phasing out of hydrochlorofluorocarbon and chlorofluorocarbon fluids and further environmental problems arising from new, synthetic working fluids stimulate a continuously rising interest on natural candidates. The nontoxic and nonflammable CO2 impacts neither on ozone depletion nor on global warming if leaked to the atmosphere. The critical temperature of CO2 (31.1 °C) is almost ambient and, therefore, it undergoes a trans-critical refrigeration cycle. In cooling mode operation, a trans-critical CO2 system, as compared to conventional air-conditioners, has a lower performance which, contrary to conventional systems, strongly depends on the refrigerant charge. In this paper, the performance of the trans-critical system was evaluated experimentally under different refrigerant charge amounts. The influence of charge on coefficient of performance (COP), cooling capacity, compression ratio, suction line superheat was analyzed in detail. The experimental results indicate that the COP of the trans-critical cycle attains a maximum at optimal refrigerant charge. By varying the charge the cooling capacity attains a maximum, as well, that corresponds to the optimal charge. In order to understand the effect of refrigerant charge on the performance of each device of the plant, an exergetic analysis based on the experimental data was carried out. The analysis shows that the exergy flow destroyed in the compressor is one of the major causes of overall exergy destruction. At the optimal refrigerant charge, the compression losses attain a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aprea C, Maiorino A (2008) An experimental evaluation of the transcritical CO2 refrigerator performances using an internal heat exchanger. Int J Refrig 31:1006–1011

    Article  CAS  Google Scholar 

  • Aprea C, Maiorino A (2009a) Transcritical CO2 refrigerator and sub-critical R134a refrigerator: a comparison of the experimental results. Int J Energy Res 33:1040–1047

    Article  CAS  Google Scholar 

  • Aprea C, Maiorino A (2009b) Heat rejection pressure optimization for a carbon dioxide split system: an experimental study. Appl Energy 861:2373–2380

    Article  Google Scholar 

  • Aprea C, Greco A, Maiorino A (2012) An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2. Energy 45:753–761

    Article  CAS  Google Scholar 

  • ASHRAE Standards 116 (1993), Methods of testing for seasonal efficiency of unitary air-conditioner and heat pumps. ASHRAE Standards 116. Atlanta (GA), ASHRAE

  • Baek JS, Groll EA, Lawless PB (2005a) Piston cylinder work producing expansion device in a carbon dioxide cycle. Part I: experimental investigation. Int J Refrig 28:141–151

    Article  CAS  Google Scholar 

  • Baek JS, Groll EA, Lawless PB (2005b) Piston cylinder work producing expansion device in a carbon dioxide cycle. Part I: theoretical investigation. Int J Refrig 28:152–164

    Article  CAS  Google Scholar 

  • Bansal P (2012) A review-status of CO2 as a low temperature refrigerant: fundamental and R&D opportunities. Applied Therm Eng 41:18–29

    Article  CAS  Google Scholar 

  • Bhatkar VW, Kriplani VM, Awari GK (2013) Alternative refrigerants in vapour compression refrigeration cycle for sustainable environment: a review of recent research. Int J Env Sci Technol 10(7):871–880

    Article  CAS  Google Scholar 

  • Boewe D, Bullard C, Yin J, Hrnjak PS (2001) Contribution of internal heat exchanger to transcritical R744 cycle performance. Int J HVAC&R Res 7(2):155–168

    Article  Google Scholar 

  • Cabello R, Sànchez D, Patiño J, Llipis R, Torrella E (2012) Experimental analysis of energy performance of modified single-stage CO2 transcritical vapour compression cycles based on vapour injection in the suction line. Appl Therm Eng 47:86–94

    Article  CAS  Google Scholar 

  • Chen Y, Gu JJ (2005) The optimum high pressure for CO2 transcritical refrigeration systems with an internal heat exchangers. Int J Refrig 28(8):1238–1249

    Article  CAS  Google Scholar 

  • Cho C, Ryu Y, Kim H, Kim Y (2005) Effects of refrigerant charge amount on the performance of a transcritical CO2 heat pump. Int J Refrig 28:1266–1273

    Article  CAS  Google Scholar 

  • Choi JM, Kim YC (2002) The effects of improper charge on the performance of a heat pump with an electronic expansion valve and capillary tube. Energy 27:391–404

    Article  CAS  Google Scholar 

  • Choi JM, Kim YC (2004) Influence of expansion device on the performance of a heat pump using R407C under a range of charging conditions. Int J Refrig 45:378–384

    Article  Google Scholar 

  • Corberán J, Martínez IO, Gonzálvez J (2008) Charge optimization study of a reversible water-to-water propane heat pump. Int J Refrig 31:716–726

    Article  Google Scholar 

  • Elbel S, Hrnjak P (2004) Flash gas bypass for improving the performance of transcritical R744 systems that use microchannel evaporators. J Refrig 7:724–735

    Article  Google Scholar 

  • Eskandari NF, Yavari MA (2012) Performance of a new two-stage multi intercooling transcritical CO2 ejector refrigeration cycle. Appl Therm Eng 40:202–209

    Article  Google Scholar 

  • Groll EA, Baek S, Lawless PB (2002) Effect of pressure ratio across compressors on the performance of the transcritical CO2 cycle with two-stage compression and intercooling, The International Refrigeration and Air Conditioning Conference, Purdue, R11-7

  • Halozan H, Rieberer R (2000) CO2 as a refrigerant possible application, The Fourth IIR-Gustav Lorentzen conference on natural working fluids, Purdue, pp 43–50

  • Heidelck R, Kruse H (2000) Expansion machines for carbon dioxide bases on modified reciprocating machines, The Fourth IIR-Gustav Lorentzen conference on natural working fluids, West Lafayette, pp 455–462

  • Huff HJ, Hwang Y, Radermacher R (2002) Options for a two-stage transcritical carbon dioxide cycle, The Fifth IIR-Gustav Lorentzen conference on natural working fluids, Guangzhou, China, pp 143–149

  • Hwang Y, Radermacher R (1999) Experimental investigation of the CO2 refrigeration cycle. ASHRAE Trans 105(1):1219–1227

    Google Scholar 

  • Hwang Y, Celik A, Radermacher R (2000) Performance of CO2 cycles with a two-stage compressor, The Fourth IIR-Gustav Lorentzen conference on natural working fluids, Purdue, p 105

  • Hwang Y, Huff H, Preissner R, Radermacher R (2001) CO2 transcritical cycles for high temperature application, Proc. ASME Int Congr 2001, New York, pp 255–260

  • Inagaki M, Sasaya H, Osakli Y (1997) Pointing to the future: two stage CO2 compression, heat transfer issues in natural refrigerants. Int Inst Refrig 24:131–140

    Google Scholar 

  • Kim SG, Kim MS (2002) Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant. Int J Refrig 25:1093–1101

    Article  CAS  Google Scholar 

  • Kim MH, Petterson J, Bullard CW (2004) Fundamental process and system design issues in CO2 vapor compression systems. Prog Energy Combust Sci 30:119–174

    Article  CAS  Google Scholar 

  • Labview ver. 7.1, National Instruments Software

  • Li D, Groll EA (2005) Transcritical CO2 refrigeration cycle with ejector-expansion device. Int J Refrig 28:766–773

    Article  CAS  Google Scholar 

  • Liao SM, Zhao TS, Jakobsen A (2000) A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles. Appl Therm Eng 20(9):831–841

    Article  CAS  Google Scholar 

  • Liu JP, Chen JP, Chen ZJ (2002) Thermodynamic analysis on the transcritical R744 vapor-compression/ejection hybrid refrigeration cycle, The Fifth IIR-Gustav Lorentzen conference on natural working fluids, Guangzhou, China, pp 184–188

  • Lorentzen G (1994) Revival of carbon dioxide as a refrigerant. Int J Refrig 17(5):292–301

    Article  CAS  Google Scholar 

  • Lorentzen G (1995) The use of natural refrigerants: a complete solution to the CFC/HCHC predicament. Int J Refrig 18(3):190–197

    Article  CAS  Google Scholar 

  • Lorentzen G, Petterson J (1993) A new efficient and environmentally benign system for air-conditioning. Int J Refrig 16(1):4–12

    Article  CAS  Google Scholar 

  • Ma Y, Wei D, Za S, Li M (2002) Thermodynamic analysis and compression expander for CO2 transcritical cycle, The Fifth IIR-Gustav Lorentzen conference on natural working fluids, Guangzhou, China, pp 292–297

  • Ma Y, He Z, Peng X, Xing Z (2012) Experimental investigation of the discharge valve dynamics in a reciprocating compressor for trans-critical CO2 refrigeration cycle. Appl Therm Eng 32:13–21

    Article  Google Scholar 

  • Moffat RJ (1985) Using uncertainty analysis in the planning of an experiment. Trans ASME J Fluids Eng 107:173–178

    Article  CAS  Google Scholar 

  • Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone. Nature 249:810–812

    Article  CAS  Google Scholar 

  • Montreal Protocol on substances that deplete the ozone layer (1987). New York, NY

  • Mu JY, Chen JP, Chen ZJ (2003) System design and analysis of the transcritical carbon dioxide automotive air-conditioning system. J Zhejiang Univ Sci A 4(3):305–308

    Article  CAS  Google Scholar 

  • Neksa P (2002) CO2 heat pump systems. Int J Refrig 25:421–427

    Article  CAS  Google Scholar 

  • Neksa P, Rekstad H, Zakeri P, Schiefloe P (1998) CO2 heat pump water heater: characteristics, system design and experimental results. Int J Refrig 21:172–179

    Article  CAS  Google Scholar 

  • Nickl J, Will G, Kraus W, Quack H (2002) Design considerations for a second generation CO2-expander, The Fifth IIR-Gustav Lorentzen conference on natural working fluids, Guangzhou, China, pp 189–196

  • Palm B (2007) Refrigeration systems with minimum charge of refrigerant. Appl Therm Eng 27:1693–1701

    Article  CAS  Google Scholar 

  • Pérez-García V, Belman-Flores JM, Navarro-Esbrí J, Rubio-Maya C (2013) Comparative study of transcritical vapour compression configurations using CO2 as a refrigeration mode base on simulation. Appl Therm Eng 51:1038–1046

    Article  Google Scholar 

  • Poggi F, Macchi-Tejeda H, Leducq D, Bontemps A (2008) Review: refrigerant charge in refrigerating systems and strategies of charge reduction. Int J Refrig 31:353–370

    Article  Google Scholar 

  • Rebora A, Senarega M, Tagliafico LA (2006) Influence of some design parameters on the thermal performance of domestic appliances. Heat Mass Transf 42:803–811

    Article  CAS  Google Scholar 

  • REFPROP ver.9.1 (2010) NIST Thermodynamic properties of refrigerants and refrigerant mixtures database. US Dept. of Commerce, Gaithersburg

    Google Scholar 

  • Robinson D, Groll E (1998) Efficiencies of transcritical CO2 cycle with and without an expansion turbine. Int J Refrig 21(7):577–589

    Article  CAS  Google Scholar 

  • Tagliafico LA, Scarpa F, Tagliafico G (2012) A compact dynamic model for household vapour compression refrigerated systems. Appl Therm Eng 35:1–8

    Article  Google Scholar 

  • Tao YB, He YL, Tao WQ, Wu ZG (2010) Experimental study on the performance of CO2 residential air-conditioning system with an internal heat exchanger. Energy Convers Manage 51(4):64–70

    Article  CAS  Google Scholar 

  • Xu X, Chen G, Tang L, Zhu Z, Liu S (2011) Experimental evaluation of the effect of an internal heat exchanger on a transcritical CO2 ejector system. J Zhejiang Univ Sci A 12(2):146–153

    Article  CAS  Google Scholar 

  • Zhang Z, Ma Y, Wang H, Li M (2013) Theoretical evaluation on the effect of internal heat exchanger in ejector expansion transcritical CO2 refrigeration cycle. Appl Therm Eng 50:932–938

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of University of Salerno was gratefully acknowledge. (FARB UNIVERSITY OF SALERNO NR. ORSA072593,”Indagine sperimentale su un impianto frigorifero a compressione operante con l’anidride carbonica”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Greco.

List of symbols

List of symbols

Symbols

BPV:

Back pressure valve

COP:

Coefficient of performance

ex:

Specific exergy (J/kg)

\({\dot{\text{E}}\text{x}}\) :

Exergy flow (W)

EEV:

Electronic expansion valve

h :

Specific enthalpy (kJ/kg)

IHX:

Internal heat exchanger

\(\dot{m}_{\text{r}}\) :

Refrigerant mass flow rate (kg/s)

NC:

Normalized charge

\(\dot{Q}\) :

Heat transfer rate (kW)

RC:

Refrigerant charge (kg)

SC:

Specific charge (kg/kW)

T :

Temperature (°C, K)

T o :

Ambient temperature (°C, K)

v :

Specific volume (m3/kg)

\(\dot{V}\) :

Volumetric flow rate (m3/s)

\(\dot{W}\) :

Compression power (kW)

Greek symbols

β :

Compression ratio

η v :

Volumetric efficiency

τ :

Dimensionless exergetic temperature

Subscripts

a:

Air

des:

Destroyed

cp:

Compressor

ev:

Evaporative

ev:

Evaporator

gc:

Gas cooler

in:

Inlet

IHX:

Internal heat exchanger

max:

Maximum

TMT:

Mean thermodynamic

out:

Outlet

r:

Refrigerant fluid

suc:

Suction

v:

Expansion valve

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aprea, C., Greco, A. & Maiorino, A. An experimental study on charge optimization of a trans-critical CO2 cycle. Int. J. Environ. Sci. Technol. 12, 1097–1106 (2015). https://doi.org/10.1007/s13762-014-0502-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0502-6

Keywords

Navigation