Skip to main content
Log in

Contributions on enhancing the copper uptake by using natural chelators, with applications in soil phytoremediation

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The chelate assisted phytoremediation of polluted soils, based on the complexation of metals with chelators, can be a valuable green solution for agricultural soils decontamination. Copper is considered a hardly available and slowly translocating element, but the complexation may increase its bioavailability and translocation capacity, with benefits for soil phytoremediation. In our study, the ability of horse manure—a natural source of compounds which can act as chelators for enhancing the bioavailability and uptake of copper from contaminated soils—was investigated, by the use of white mustard (Sinapis alba) as the accumulator plant; the results were compared with those obtained for ethylenediaminetetraacetate, a synthetic chelator. The copper bioavailability, bioaccumulation, uptake, and thus the potential for phytoremediation of copper polluted soils, were estimated by translocation factor, bioaccumulation factor, and uptake coefficient. The results indicated that the use of horse manure as natural chelators source can improve the copper phytoextraction capacity, also having the advantage of an increase in biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahlawat Sainger P, Dhankhar R, Sainger M, Kaushik A, Singh RP (2011) Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Ecotoxicol Environ Saf 74:2284–2291

    Article  Google Scholar 

  • Baltrénaité E, Lietuvninkas A, Baltrénas P (2012) Use of dynamic factors to assess metal uptake and transfer in plants—example of trees. Water Air Soil Pollut 223:4297–4306

    Article  Google Scholar 

  • Benton Jones J Jr (2001) Laboratory guide for conducting soil tests and plant analysis. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Branzini A, Santos González R, Zubillaga M (2012) Absorption and translocation of copper, zinc and chromium by Sesbania virgata. J Environ Manage 102:50–54

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  Google Scholar 

  • Dean JR (2007) Bioavailability, bioaccessibility and mobility of environmental contaminants. Wiley, Chichester

    Book  Google Scholar 

  • do Nascimento CWA, Amarasiriwardena D, Xin B (2006) Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut 140:114–123

    Article  Google Scholar 

  • Freytag J (1986) Bestimmung von Trsansferfaktoren Boden/Pflanze einger Elemente und Untersuchungen uber deren Abhangigkeit von ausgewahlten Bodeneigenschaften. Hamburger Bodenkundliche Arbeiten 1:43–51

    Google Scholar 

  • Gupta VK, Srivastava SK, Mohan D, Sharma S (1997) Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manage 17:517–522

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007) Defluoridation of wastewaters using waste carbon slurry. Water Res 41:3307–3316. doi:10.1016/j.watres.2007.04.029

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011a) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23. doi:10.1016/j.jhazmat.2010.08.053

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011b) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212. doi:10.1016/j.watres.2011.01.012

    Article  CAS  Google Scholar 

  • Houba VJG, Temminghoff EJM, Gaikhorst GA, van Vark W (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant Anal 31:1299–1396

    Article  CAS  Google Scholar 

  • ICH Expert Working Group (2005) Harmonised tripartite guideline-validation of analytical procedures: text and methodology Q2(R1)

  • Jain AK, Gupta VK, Bhatnagar A, Suhas (2003a) A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Sep Sci Technol 38:463–481. doi:10.1081/SS-120016585

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Bhatnagar A, Jain S (2003b) A comparative assessment of adsorbents prepared from industrial wastes for the removal of cationic dye. J Indian Chem Soc 80:267–270

    CAS  Google Scholar 

  • JICA, APM, Industrial Chemistry Faculty (2003) The control of soil quality. Cartea Universitara Publishing House, Bucuresti (in Romanian)

  • Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Maric M, Antonijevic M, Alagic S (2012) The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil. Environ Sci Pollut Res. doi:10.1007/s11356-012-1007-9

    Google Scholar 

  • Máthé-Gáspár G, Anton A (2005) Phytoremediation study: factors influencing heavy metal uptake of plants. Acta Biol Szeged 49:69–70

    Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation. Wiley, New Jersey, pp 3–58

    Chapter  Google Scholar 

  • McLean JE, Bledsoe BE (1992) Behavior of metals in soils, EPA/540/S-92/018 ground water issue

  • Mitchell RL, Burchett MD, Pulkownik A, McCluskey L (1988) Effects of environmentally hazardous chemicals on the emergence and early growth of selected Australian native plants. Plant Soil 112:195–199

    Article  CAS  Google Scholar 

  • Mittal A, Gupta VK, Malviya A, Mittal J (2008) Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya). J Hazard Mater 151:821–832. doi:10.1016/j.jhazmat.2007.06.059

    Article  CAS  Google Scholar 

  • Mittal A, Kaur D, Malviya A, Mittal J, Gupta VK (2009) Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. J Colloid Interface Sci 337:345–354. doi:10.1016/j.jcis.2009.05.016

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010a) Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. J Colloid Interface Sci 342:518–527. doi:10.1016/j.jcis.2009.10.046

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Gupta VK (2010b) Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 344:497–507. doi:10.1016/j.jcis.2010.01.007

    Article  CAS  Google Scholar 

  • Mobin SM, Sanghavi BJ, Srivastava AK, Mathur P, Lahiri GK (2010) Biomimetic sensor for certain phenols employing a copper(II) complex. Anal Chem 82:5983–5992. doi:10.1021/ac1004037

    Article  CAS  Google Scholar 

  • Moral R, Moreno-Caselles J, Perez-Murcia MD, Perez-Espinosa A, Rufete B, Paredes C (2005) Characterisation of the organic matter pool in manures. Bioresour Technol 96:153–158

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126. doi:10.1007/s11270-007-9401-5

    Article  CAS  Google Scholar 

  • Pansu M, Gautheyrou J (2006) Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer, Berlin

    Book  Google Scholar 

  • Pérez-Esteban J, Escolástico C, Ruiz-Fernández J, Masaguer A, Moliner A (2011) Bioavailability and extraction of heavy metals from contaminated soil by Atriplex halimus. Environ Exp Bot. doi:10.1016/j.envexpbot.2011.12.003

    Google Scholar 

  • Pérez-Esteban J, Escolástico C, Masaguer A, Moliner A (2012) Effects of sheep and horse manure and pine bark amendments on metal distribution and chemical properties of contaminated mine soils. Eur J Soil Sci. doi:10.1111/j.1365-2389.2012.01468.x

    Google Scholar 

  • Rimmer DL, Reichman SM, Menzies NW (2001) Bioavailability of Cu, Zn, and Mn in contaminated soils and speciation in soil solution. In: Iskandar IK, Kirkham MB (eds) Trace elements in soil: bioavailability, flux, and transfer. Lewis Publishers, CRC Press, New York, pp 77–88

    Google Scholar 

  • Ross MS (1994) Sources and form of potentially toxic metals in soil plant systems. In: Ross MS (ed) Toxic metals in soil plant systems. Wiley, Chichester, pp 3–25

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sanghavi BJ, Mobin SM, Mathur P, Lahiri GK, Srivastava AK (2013) Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens Bioelectron 39:124–132. doi:10.1016/j.bios.2012.07.008

    Article  CAS  Google Scholar 

  • Schumacher BA, Neary AJ, Palmer CJ, Pastorek L, Morrison IK, Marsh M (1995) Laboratory methods for soil and foliar analysis in long-term environmental monitoring programs. USEPA, Office of Research and Development, EPA/600/R-95/077

  • Silveira MLA, Alloni LRF, Guilherme LRG (2003) Biosolids and heavy metals in soils. Sci Agric 60:793–806

    Article  CAS  Google Scholar 

  • Sinegani AAS, Khalilikhah F (2011) The effect of application time of mobilising agents on growth and phytoextraction of lead by Brassica napus from a calcareous mine soil. Environ Chem Lett 9:259–265. doi:10.1007/s10311-010-0275-1

    Article  CAS  Google Scholar 

  • Skoog DA, West DM, Holler FL (1996) Fundamentals of analytical chemistry, 7th edn. Saunders College Publishing, Orlando, FL

    Google Scholar 

  • Turan M, Esringü A (2007) Phytoremediation based on canol a (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soi by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ 53:7–15

    Article  CAS  Google Scholar 

  • Turgut C, Babahan I, Atatanir L, Cutright TJ (2010) Assessment of two new ligands for increasing the uptake of Cd, Cr, and Ni in Helianthus annuus grown in a sandy-loam soil. Water Air Soil Pollut 210:289–295. doi:10.1007/s11270-009-0250-2

    Article  CAS  Google Scholar 

  • USEPA (1992) Technical support document for land application of sewage sludge, vol I and II (PB93-110575). Office of Water, Washington, DC

  • USEPA (1995) Laboratory methods for soil and foliar analysis in long-term environmental monitoring programs. EPA/600/R-95/077, United States Environmental Protection Agency, Office of Research and Development, Cincinnati

  • USEPA (2000) Introduction to phytoremediation. EPA 600/R-99/107, United States Environmental Protection Agency, Office of Research and Development, Washington, DC

  • Vogeler I, Green SR, Clothier BE, Kirkham MB, Robinson BH (2001) Contaminant transport in the root zone. In: Iskandar IK, Kirkham MB (eds) Trace elements in soils: bioavailability, flux, and transfer. Lewis Publishers, CRC Press, New York, pp 175–197

    Google Scholar 

  • Wei JL, Lai HY, Chen ZS (2012) Chelator effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula and Impatiens walleriana. Ecotoxicol Environ Saf 84:173–178

    Article  CAS  Google Scholar 

  • Wua LH, Luo YM, Christie P, Wong MH (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50:819–822

    Article  Google Scholar 

  • Yeh TY, Pan CT (2012) Effect of chelating agents on copper, zinc uptake by sunflower, Chinese cabbage, cattail, and reed for different organic contents of soils. J Bioanal Biomed 4:6–10. doi:10.4172/1948-593X.1000056

    Article  CAS  Google Scholar 

  • Zehra SS, Arshad M, Mahmood T, Waheed A (2009) Assessment of heavy metal accumulation and their translocation in plant species. Afr J Biotechnol 8:2802–2810

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Constantin Ancuta (agricultural engineer) and his co-workers for supplying us the soil samples and for their kind assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dumbrava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumbrava, A., Birghila, S. & Munteanu, M. Contributions on enhancing the copper uptake by using natural chelators, with applications in soil phytoremediation. Int. J. Environ. Sci. Technol. 12, 929–938 (2015). https://doi.org/10.1007/s13762-013-0467-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0467-x

Keywords

Navigation