Skip to main content

Advertisement

Log in

Long-term treatment with rotigotine in drug-naïve PSP patients

  • Original Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Progressive supranuclear palsy (PSP) is a severe neurodegenerative disease still lacking of alleviating treatments for either cognitive or motor disturbances. Aimed at widening the spectrum of therapeutic options, here, we describe efficacy and safety of a long-term treatment with Rotigotine, a non-ergolinic dopamine agonist, in PSP. Seven PSP drug-naïve patients, presenting with Richardson’s syndrome, received up to 6 mg/24 h transdermal patch for 42 weeks as unique therapy. Adverse effects were recorded; efficacy was measured by comparing baseline and final treatment scores of Montreal Cognitive Assessment (MoCA), Unified Parkinson Disease Rating Scale part3, and PSP rating scale (PSP-RS). At the end of our observation, no significant adverse events occurred; the cognitive item of PSP-RS was improved and MoCA score was similar at baseline. Contrariwise, motor disturbances worsened according to disease progression. Our observation thus suggests that long-term treatment with low doses of rotigotine is well tolerated and may support cognitive functions of PSP patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Litvan I, Kong M (2014) Rate of decline in progressive supranuclear palsy. Mov Disord 29:463–468. https://doi.org/10.1002/mds.25843

    Article  PubMed  Google Scholar 

  2. Schirinzi T, Di Lazzaro G, Colona VL et al (2017) Assessment of serum uric acid as risk factor for tauopathies. J Neural Transm. https://doi.org/10.1007/s00702-017-1743-6

    Article  PubMed  Google Scholar 

  3. Williams DR, Lees AJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8:270–279. https://doi.org/10.1016/S1474-4422(09)70042-0

    Article  PubMed  Google Scholar 

  4. Schirinzi T, Sancesario GM, Di Lazzaro G et al (2018) Clinical value of CSF amyloid-beta-42 and tau proteins in progressive supranuclear palsy. J Neural Transm. https://doi.org/10.1007/s00702-018-1893-1

    Article  PubMed  Google Scholar 

  5. Respondek G, Stamelou M, Kurz C et al (2014) The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord 29:1758–1766. https://doi.org/10.1002/mds.26054

    Article  PubMed  Google Scholar 

  6. Schirinzi T, Sancesario GM, Ialongo C et al (2015) A clinical and biochemical analysis in the differential diagnosis of idiopathic normal pressure hydrocephalus. Front Neurol 6:86. https://doi.org/10.3389/fneur.2015.00086

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lamb R, Rohrer JD, Lees AJ, Morris HR (2016) Progressive supranuclear palsy and corticobasal degeneration: pathophysiology and treatment options. Curr Treat Options Neurol 18:42. https://doi.org/10.1007/s11940-016-0422-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Constantinescu R, Richard I, Kurlan R (2007) Levodopa responsiveness in disorders with parkinsonism: a review of the literature. Mov Disord 22:2141–2148. https://doi.org/10.1002/mds.21578

    Article  PubMed  Google Scholar 

  9. Nuebling G, Hensler M, Paul S et al (2016) PROSPERA: a randomized, controlled trial evaluating rasagiline in progressive supranuclear palsy. J Neurol 263:1565–1574. https://doi.org/10.1007/s00415-016-8169-1

    Article  CAS  PubMed  Google Scholar 

  10. Eschlböck S, Krismer F, Wenning GK (2016) Interventional trials in atypical parkinsonism. Parkinsonism Relat Disord 22(Suppl 1):S82–S92. https://doi.org/10.1016/j.parkreldis.2015.09.038

    Article  PubMed  Google Scholar 

  11. Murphy KE, Karaconji T, Hardman CD, Halliday GM (2008) Excessive dopamine neuron loss in progressive supranuclear palsy. Mov Disord 23:607–610. https://doi.org/10.1002/mds.21907

    Article  PubMed  Google Scholar 

  12. Elshoff J-P, Braun M, Andreas J-O et al (2012) Steady-state plasma concentration profile of transdermal rotigotine: an integrated analysis of three, open-label, randomized, phase I multiple dose studies. Clin Ther 34:966–978. https://doi.org/10.1016/j.clinthera.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  13. Ray Chaudhuri K, Martinez-Martin P, Antonini A et al (2013) Rotigotine and specific non-motor symptoms of Parkinson’s disease: post hoc analysis of RECOVER. Parkinsonism Relat Disord 19:660–665. https://doi.org/10.1016/j.parkreldis.2013.02.018

    Article  CAS  PubMed  Google Scholar 

  14. Schirinzi T, Imbriani P, Elia AD et al (2017) Rotigotine may control drooling in patients with Parkinson’ s disease: preliminary findings. Clin Neurol Neurosurg 156:63–65. https://doi.org/10.1016/j.clineuro.2017.03.012

    Article  PubMed  Google Scholar 

  15. Moretti DV, Binetti G, Zanetti O, Frisoni GB (2014) Behavioral and neurophysiological effects of transdermal rotigotine in atypical parkinsonism. Front Neurol 5:85. https://doi.org/10.3389/fneur.2014.00085

    Article  PubMed  PubMed Central  Google Scholar 

  16. Moccia M, Picillo M, Erro R et al (2015) Diagnosis and treatment of restless legs syndrome in progressive supranuclear palsy. J Neurol Sci 350:103–104. https://doi.org/10.1016/j.jns.2015.01.025

    Article  PubMed  Google Scholar 

  17. Moretti DV, Binetti G, Zanetti O, Frisoni GB (2014) Rotigotine is safe and efficacious in atypical Parkinsonism syndromes induced by both α-synucleinopathy and tauopathy. Neuropsychiatr Dis Treat 10:1003–1009. https://doi.org/10.2147/NDT.S64015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Litvan I, Agid Y, Jankovic J et al (1996) Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome). Neurology 46:922–930

    Article  CAS  PubMed  Google Scholar 

  19. Höglinger GU, Respondek G, Stamelou M et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32:853–864. https://doi.org/10.1002/mds.26987

    Article  PubMed  PubMed Central  Google Scholar 

  20. Golbe LI, Ohman-Strickland PA (2007) A clinical rating scale for progressive supranuclear palsy. Brain 130:1552–1565

    Article  Google Scholar 

  21. Hoops S, Nazem S, Siderowf AD et al (2009) Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology 73:1738–1745. https://doi.org/10.1212/WNL.0b013e3181c34b47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fiorenzato E, Weis L, Falup-Pecurariu C et al (2016) Montreal cognitive assessment (MoCA) and mini-mental state examination (MMSE) performance in progressive supranuclear palsy and multiple system atrophy. J Neural Transm 123:1435–1442. https://doi.org/10.1007/s00702-016-1589-3

    Article  PubMed  Google Scholar 

  23. Golbe LI (2014) Progressive supranuclear palsy. Semin Neurol 34:151–159. https://doi.org/10.1055/s-0034-1381736

    Article  PubMed  Google Scholar 

  24. Lagarde J, Valabrègue R, Corvol JC et al (2013) Are frontal cognitive and atrophy patterns different in PSP and bvFTD? A comparative neuropsychological and VBM study. PLoS One 8:1–10. https://doi.org/10.1371/journal.pone.0080353

    Article  Google Scholar 

  25. Brenneis C, Seppi K, Schocke M et al (2004) Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 75:246–249

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ott T, Nieder A (2016) Dopamine D2 receptors enhance population dynamics in primate prefrontal working memory circuits. Cereb Cortex. https://doi.org/10.1093/cercor/bhw244

    Article  Google Scholar 

  27. Martorana A, Di Lorenzo F, Esposito Z et al (2013) Dopamine D2-agonist Rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology 64:108–113. https://doi.org/10.1016/j.neuropharm.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  28. Schirinzi T, Madeo G, Martella G et al (2016) Early synaptic dysfunction in Parkinson’s disease: insights from animal models. Mov Disord 31:802–813. https://doi.org/10.1002/mds.26620

    Article  PubMed  Google Scholar 

Download references

Funding

No funding has been received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Schirinzi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical standards

The study was conducted according with institutional ethical standards and the Helsinki declaration.

Informed consent

All participants signed an informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirinzi, T., Pisani, V., Imbriani, P. et al. Long-term treatment with rotigotine in drug-naïve PSP patients. Acta Neurol Belg 119, 113–116 (2019). https://doi.org/10.1007/s13760-018-0993-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-018-0993-x

Keywords

Navigation