The effect of CA1 dopaminergic system on amnesia induced by harmane in mice

  • Mohammad Nasehi
  • Simin Hasanvand
  • Fatemeh Khakpai
  • Mohammad-Reza Zarrindast
Original Article
  • 5 Downloads

Abstract

In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.

Keywords

Memory Dopaminergic system Harmane Inhibitory avoidance Mice 

Notes

Acknowledgements

The authors thank the Iran National Science Foundation (INSF) for providing the financial support for the project.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    O’Reilly RC, Rudy JW (2000) Computational principles of learning in the neocortex and hippocampus. Hippocampus 10(4):389–397CrossRefPubMedGoogle Scholar
  2. 2.
    Khakpai F, Nasehi M, Haeri-Rohani A et al (2012) Scopolamine induced memory impairment; possible involvement of NMDA receptor mechanisms of dorsal hippocampus and/or septum. Behav Brain Res 231(1):1–10CrossRefPubMedGoogle Scholar
  3. 3.
    Riedel G, Micheau J (2001) Function of the hippocampus in memory formation: desperately seeking resolution. Prog Neuropsychopharmacol Biol Psychiatry 25(4):835–853CrossRefPubMedGoogle Scholar
  4. 4.
    Li HZ, Xiong J, Xu W et al (2005) Long-term depression in rat CA1-subicular synapses depends on the G-protein coupled mACh receptors. Neurosci Res 52(3):287–294CrossRefPubMedGoogle Scholar
  5. 5.
    Manns JR, Hopkins RO, Squire LR (2003) Semantic memory and the human hippocampus. Neuron 38(1):127–133CrossRefPubMedGoogle Scholar
  6. 6.
    Swanson-Park JL, Coussens CM, Mason-Parker SE et al (1999) A double dissociation within the hippocampus of dopamine D1/D5 receptor and beta-adrenergic receptor contributions to the persistence of long-term potentiation. Neuroscience 92(2):485–497CrossRefPubMedGoogle Scholar
  7. 7.
    Thierry AM, Gioanni Y, Degenetais E et al (2000) Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10:411–419CrossRefPubMedGoogle Scholar
  8. 8.
    Zarrindast MR, Dorrani M, Lachinani R et al (2010) Blockade of dorsal hippocampal dopamine receptors inhibits state-dependent learning induced by cannabinoid receptor agonist in mice. Neurosci Res 67(1):25–32CrossRefPubMedGoogle Scholar
  9. 9.
    Khakpai F, Nasehi M, Haeri-Rohani A et al (2013) Septo-hippocampo-septal loop and memory formation. Basic Clin Neurosci 4:5–23PubMedPubMedCentralGoogle Scholar
  10. 10.
    Otmakhova NA, Lisman JE (1996) D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J Neurosci 16:7478–7486CrossRefPubMedGoogle Scholar
  11. 11.
    Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69(6):375–390CrossRefPubMedGoogle Scholar
  12. 12.
    Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18:1613–1621CrossRefPubMedGoogle Scholar
  13. 13.
    Izquierdo I, Medina JH, Izquierdo LA et al (1998) Short- and long-term memory are differentially regulated by monoaminergic systems in the rat brain. Neurobiol Learn Mem 69:219–224CrossRefPubMedGoogle Scholar
  14. 14.
    Umegaki H, Munoz J, Meyer RC et al (2001) Involvement of dopamine D(2) receptors in complex maze learning and acetylcholinerelease in ventral hippocampus of rats. Neuroscience 103:27–33CrossRefPubMedGoogle Scholar
  15. 15.
    Rezayof A, Motavasseli T, Rassouli Y et al (2007) Dorsal hippocampal dopamine receptors are involved in mediating ethanol state-dependent memory. Life Sci 80:285–292CrossRefPubMedGoogle Scholar
  16. 16.
    Herold C, Joshi I, Chehadi O et al Plasticity in D1-like receptor expression is associated with different components of cognitive processes. PLoS One 7(5):e36484Google Scholar
  17. 17.
    Vallone D, Roberto P, Emiliana B (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132CrossRefPubMedGoogle Scholar
  18. 18.
    Vanderschuren LJ, Wardeh G, De Vries TJ et al (1999) Opposing role of dopamine D1 and D2 receptors in modulation of rat nucleus accumbens noradrenaline release. J Neurosci 19(10):4123–4131CrossRefPubMedGoogle Scholar
  19. 19.
    Wang Y, Harsanyi K, Mangel SC (1997) Endogenous activation of dopamine d2 receptors regulates dopamine release in the fish retina. Am Physiol Soc 78:439–449Google Scholar
  20. 20.
    Zarrindast MR, Azami BN, Rostami P et al (2006) Repeated administration of dopaminergic agents in the nucleus accumbens and morphine-induced place preference. Behav Brain Res 169:248–255CrossRefPubMedGoogle Scholar
  21. 21.
    Walters JR, Bergstrom DA, Carlson JH et al (1987) D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science 236:719–722CrossRefPubMedGoogle Scholar
  22. 22.
    Braun AR, Chase TN (1986) Obligatory D1/D2 receptor interaction in the generation of dopamine agonist related behavior. Eur J Pharmacol 131:201–206CrossRefGoogle Scholar
  23. 23.
    Zweifel LS, Fadok J, Argilli E et al (2011) Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14:620–626CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gangarossa G, Longueville S, De Bundel D et al (2012) Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22(12):2199–2207CrossRefPubMedGoogle Scholar
  25. 25.
    Sherry JM, Hale MW, Crowe SF (2005) The effects of the dopamine D1 receptor antagonist SCH23390 on memory reconsolidation following reminder-activated retrieval in day-old chicks. Neurobiol Learn Mem 83:104–112CrossRefPubMedGoogle Scholar
  26. 26.
    Fujishiro H, Umegaki H, Suzuki Y et al (2005) Dopamine D2 receptor plays a role in memory function: implications of dopamine–acetylcholine interaction in the ventral hippocampus. Psychopharmacology 182:253–261CrossRefPubMedGoogle Scholar
  27. 27.
    Hamsa TP, Kuttan G (2010) Harmine inhibits tumour specific neo-vessel formation by regulating VEGF, MMP, TIMP and pro-inflammatory mediators both in vivo and in vitro. Eur J Pharmacol 649:64–73CrossRefPubMedGoogle Scholar
  28. 28.
    Balon M, Munoz MA, Carmona C et al (1999) A fluorescence study of the molecular interactions of harmane with the nucleobases, their nucleosides and mononucleotides. Biophys Chem 80:41–52CrossRefPubMedGoogle Scholar
  29. 29.
    Moura DJ, Rorig C, Vieira DL et al (2006) Effects of beta-carboline alkaloids on the object recognition task in mice. Life Sci 79(22):2099 – 104CrossRefPubMedGoogle Scholar
  30. 30.
    Nasehi M, Sharifi S, Zarrindast MR (2012) Involvement of the cholinergic system of CA1 on harmane-induced amnesia in the step-down passive avoidance test. J Psychopharmacol 26(8):1151–1161CrossRefPubMedGoogle Scholar
  31. 31.
    Ruiz-Durantez E, Ruiz-Ortega JA, Pineda J et al (2001) Stimulatory effect of harmane and other b-carbolines on locus coeruleus neurons in anaesthetized rats. Neurosci Lett 308:197–200CrossRefPubMedGoogle Scholar
  32. 32.
    Anderson NJ, Tyacke RJ, Husbands SM et al (2006) In vitro and ex vivo distribution of [3H]harmane, an endogenous β-carboline, in rat brain. Neuropharmacology 50:269–276CrossRefPubMedGoogle Scholar
  33. 33.
    Yang ML, Kuo PC, Hwang TL et al (2011) Synthesis, in vitro anti-inflammatory and cytotoxic evaluation, and mechanism of action studies of 1-benzoyl-β-carboline and 1-benzoyl-3-carboxy-β-carboline derivatives. Bioorg Med Chem 19:1674–1682CrossRefPubMedGoogle Scholar
  34. 34.
    Martın L, Martin MA, del Castillo B (1997) Changes in acid–base equilibria of harmine and harmane inclusion complexes with cyclodextrins. Biomed Chromatogr 11:87–88CrossRefPubMedGoogle Scholar
  35. 35.
    Bonnet U, Scherbaum N, Wiemann M (2008) The endogenous alkaloid harmane: acidifying and activity-reducing effects on hippocampal neurons in vitro. Progr NeuroPsychopharmacol Biol Psychiatry 32:362–367CrossRefGoogle Scholar
  36. 36.
    Munoz MA, Guardado P, Galan M et al (2000) A spectroscopic study of the molecular interactions of harmane with pyrimidine and other diazines. Biophys Chem 83:101–109CrossRefPubMedGoogle Scholar
  37. 37.
    Totsuka Y, Ushiyama H, Ishihara J et al (1999) Quantification of the co-mutagenic beta-carbolines, norharman and harman, in cigarette smoke condensates and cooked foods. Cancer Lett 143(2):139–143CrossRefPubMedGoogle Scholar
  38. 38.
    Muller WE, Feshke KJ (1981) On the neuropharmacology of harmane and other /3-carbolines. Pharmacol Biochem Behav 14:693–699CrossRefPubMedGoogle Scholar
  39. 39.
    Musgrave IF, Van Der Zypp A, Grigg M et al (2003) Endogenous imidazoline receptor ligands relax rat aorta by an endothelium-dependent mechanism. Endog Ligands Vasodilation 1009:222–227Google Scholar
  40. 40.
    Musgrave IF, Badoer E (2000) Harmane produces hypotension following microinjection into the RVLM: possible role of I1-imidazoline receptors. Br J Pharmacol 129:1057–1059CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zheng W, Wang S, Barnes LF et al (2000) Determination of harmane and harmine in human blood using reversed-phased high-performance liquid chromatography and fluorescence detection. Anal Biochem 279:125–129CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Splettstoesser F, Bonnet U, Wiemann M et al (2005) Modulation of voltage-gated channel currents by harmaline and harmane. Br J Pharmacol 144:52–58CrossRefPubMedGoogle Scholar
  43. 43.
    Nasehi M, Piri M, Nouri M et al (2010) Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test. Eur J Pharmacol 634:77–83CrossRefPubMedGoogle Scholar
  44. 44.
    Hudson AL, Gough R, Tyacke R et al (1999) Novel selective compounds for the investigation of imidazoline receptors. Ann N Y Acad Sci 881:81–91CrossRefPubMedGoogle Scholar
  45. 45.
    Touiki K, Rat P, Molimard R et al (2005) Harmane inhibits serotonergic dorsal raphe neurons in the rat. Psychopharmacology 182(4):562–569CrossRefPubMedGoogle Scholar
  46. 46.
    Talhout R, Opperhuizen A, Amsterdam JV (2007) Role of acetaldehyde in tobacco smoke addiction. Eur Neuropsychopharmacol 17:627–636CrossRefPubMedGoogle Scholar
  47. 47.
    Herraiz T, Chaparro C (2005) Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 326(2):378–386CrossRefPubMedGoogle Scholar
  48. 48.
    Nasehi M, Piri M, Nouri M et al (2010) Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test. Eur J Pharmacol 634(1–3):77–83CrossRefPubMedGoogle Scholar
  49. 49.
    Hartman RE, Lee JM, Zipfel GJ et al (2005) Characterizing learning deficits and hippocampal neuron loss following transient global cerebral ischemia in rats. Brain Res 1043:48–56CrossRefPubMedGoogle Scholar
  50. 50.
    Wise SP, Murray EA (1999) Role of the hippocampal system in conditional motor learning: mapping antecedents to action. Hippocampus 9:101–117CrossRefPubMedGoogle Scholar
  51. 51.
    Setlow B, McGaugh JL (2000) D2 dopamine receptor blockade immediately post-training enhances retention in hidden and visible platform versions of the water maze. Learn Mem 7:187–191CrossRefPubMedGoogle Scholar
  52. 52.
    Hefco V, Yamada K, Hefco A et al (2003) Role of the mesotelencephalic dopamine system in learning and memory processes in the rat. Eur J Pharmacol 475:55–60CrossRefPubMedGoogle Scholar
  53. 53.
    Kabai P, Stewart MG, Tarcali J et al (2004) Inhibiting effect of D1, but not D2 antagonist administered to the striatum on retention of passive avoidance in the chick. Neurobiol Learn Mem 81:155–158CrossRefPubMedGoogle Scholar
  54. 54.
    Lalumiere RT, Nguyen LT, McGaugh JL (2004) Post-training intrabasolateral amygdale infusions of dopamine modulate consolidation of inhibitory avoidance memory: involvement of noradrenergic and cholinergic systems. Eur J Neurosci 20:2804–2810CrossRefPubMedGoogle Scholar
  55. 55.
    Adams BW, Moghaddam B (2000) Tactile stimulation activates dopamine release in the lateral septum. Brain Res 858(1):177–180CrossRefPubMedGoogle Scholar
  56. 56.
    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. 2nd edn. Academic Press, DublinGoogle Scholar
  57. 57.
    Nasehi M, Amin Yavari S, Zarrindast MR (2013) Synergistic effects between CA1 mu opioid and dopamine D1-like receptors in impaired passive avoidance performance induced by hepatic encephalopathy in mice. Psychopharmacology 227(3):553–566CrossRefPubMedGoogle Scholar
  58. 58.
    Bonnet U, Leniger T, Wiemann M (2000) Moclobemide reduces intracellular pH and neuronal activity of CA3 neurones in guinea-pig hippocampal slices-implication for its neuroprotective properties. Neuropharmacology 39(11):2067–2074CrossRefPubMedGoogle Scholar
  59. 59.
    Nasehi M, Ghadimi F, Khakpai F et al (2017) Interaction between harmane, a class of beta-carboline alkaloids, and the CA1 serotonergic system in modulation of memory acquisition. Neurosci Res 122:17–24CrossRefPubMedGoogle Scholar
  60. 60.
    Nasehi M, Mashaghi E, Khakpai F et al (2013) Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia. Neurosci Lett 556:5–9CrossRefPubMedGoogle Scholar
  61. 61.
    Nasehi M, Morteza-Zadeh P, Khakpai F et al (2016) Additive effect of harmane and muscimol for memory consolidation impairment in inhibitory avoidance task. Neuroscience 339:287–295CrossRefPubMedGoogle Scholar
  62. 62.
    Nasehi M, Jamshidi-Mehr M, Khakpai F et al (2014) Possible involvement of CA1 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia. Pharmacol Biochem Behav 125:70–77CrossRefPubMedGoogle Scholar
  63. 63.
    Nasehi M, Ketabchi M, Khakpai F et al (2015) The effect of CA1 dopaminergic system in harmaline-induced amnesia. Neuroscience 285:47–59CrossRefPubMedGoogle Scholar
  64. 64.
    Nasehi M, Tabatabaie M, Khakpai F et al (2015) The effects of CA1 5HT4 receptors in MK801-induced amnesia and hyperlocomotion. Neurosci Lett 587:73–78CrossRefPubMedGoogle Scholar
  65. 65.
    Abel T, Lattal KM (2001) Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 11(2):180–187CrossRefPubMedGoogle Scholar
  66. 66.
    Kameyama T, Nabeshima T, Kozawa T (1986) Step-down-type passive avoidance- and escape-learning method. Suitability for experimental amnesia models. J Pharmacol Methods 16:39–52CrossRefPubMedGoogle Scholar
  67. 67.
    Zarrindast MR, Ardjmand A, Ahmadi S et al (2012) Activation of dopamine D1 receptors in the medial septum improves scopolamine-induced amnesia in the dorsal hippocampus. Behav Brain Res 229(1):68–73CrossRefPubMedGoogle Scholar
  68. 68.
    Myhrer T (2003) Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Brain Res Rev 41:268–287CrossRefPubMedGoogle Scholar
  69. 69.
    Adriani W, Felici A, Sargolini F et al (1998) N-methyl-d-aspartate and dopamine receptor involvement in the modulation of locomotor activity and memory processes. Exp Brain Res 123:52–59CrossRefPubMedGoogle Scholar
  70. 70.
    Richtand NM, Woods SC, Berger P et al (2001) D3 dopamine receptor, behavioral sensitization, and psychosis. Neurosci Biobehav Rev 25:427–443CrossRefPubMedGoogle Scholar
  71. 71.
    Meller E, Bohmaker K, Goldstein M et al (1993) Evidence that striatal synthesis-inhibiting autoreceptors are dopamine D3 receptors. Eur J Pharmacol 249:R5–6CrossRefPubMedGoogle Scholar
  72. 72.
    Tang L, Todd RD, O’Malley KL (1994) Dopamine, D2 and D3 receptors inhibit dopamine release. J Pharmacol Exp Ther 270:475–479PubMedGoogle Scholar
  73. 73.
    Rios Valentim SJJR., Gontijo AV, Peres MD et al (2009) D1 dopamine and NMDA receptors interactions in the medial prefrontal cortex: modulation of spatial working memory in rats. Behav Brain Res 204(1):124–128CrossRefPubMedGoogle Scholar
  74. 74.
    Hale MW, Crowe SF (2003) Facilitation and disruption of memory for the passive avoidance task in the day-old chick using dopamine D1 receptor compounds. Behav Pharmacol 14:525–532CrossRefPubMedGoogle Scholar
  75. 75.
    Tarantino IS, Sharp RF, Geyer MA et al (2011) Working memory span capacity improved by a D2 but not D1 receptor family agonist. Behav Brain Res 219:181–188CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Glennon RA, Dukat M, Grella B et al (2000) Binding of beta-carbolines and related agents at serotonin (5-HT(2) and 5-HT(1A)), dopamine (D(2)) and benzodiazepine receptors. Drug Alcohol Depend 60:121–132CrossRefPubMedGoogle Scholar
  77. 77.
    Baum SS, Hill R, Rommelspacher H (1996) Harman-induced changes of extracellular concentrations of neurotransmitters in the nucleus accumbens of rats. Eur J Pharmacol Biochem Behav 314:75–82Google Scholar
  78. 78.
    Kleven MS, Woolverton WL (1993) Effects of three monoamine uptake inhibitors on behavior maintained by cocaine or food presentation in rhesus monkeys. Drug Alcohol Depend 31:149–158CrossRefPubMedGoogle Scholar

Copyright information

© Belgian Neurological Society 2018

Authors and Affiliations

  • Mohammad Nasehi
    • 1
  • Simin Hasanvand
    • 2
  • Fatemeh Khakpai
    • 1
  • Mohammad-Reza Zarrindast
    • 3
    • 4
    • 5
  1. 1.Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Biology, Faculty of Basic Sciences, Northern branchIslamic Azad UniversityTehranIran
  3. 3.Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran
  4. 4.Iranian National Center for Addiction StudiesTehran University of Medical SciencesTehranIran
  5. 5.Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations