Challenges for Adoption of Integrated Pest Management (IPM): the Soybean Example

Abstract

Soybean is considered one of today’s most important crops. Planted on millions of hectares worldwide, the management of soybean pests usually requires large amounts of chemicals. However, a key component to meet the increasing demand for food due to the rapidly growing global population is protecting crops from pests while maintaining environmental quality through ecologically and economically sound integrated pest management (IPM) practices. Not only can IPM result in more profitable agriculture due to the reduction of pest control costs but also assures equitable, secure, sufficient, and stable flows of both food and ecosystem services. Despite those ecological and economic benefits, the vast areas of cultivated soybean as well as the convenience of spraying insecticides are encouraging the adoption of prophylactic pest control as a relatively inexpensive safeguard compared to IPM practices. Thus, in this forum, we discuss the reasons for soybean IPM not reaching its potential. We give examples of how we can revive this once successful pest management program with a focus on experiences in Brazil and the USA. We analyze IPM case studies to illustrate the need for growers to have easy and fast access to IPM information on its medium- and long-term benefits. Overall, this forum highlights the importance of IPM for agricultural sustainability including ecological and financial benefits.

This is a preview of subscription content, access via your institution.

References

  1. Alves TM, Macrae IV, Koch RL (2015) Soybean aphid (Hemiptera: Aphididae) affects soybean spectral reflectance. J Econ Entomol 108:2655–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson PA, Pezzini DT, Bueno NM, DiFonzo CD, Finke DL, Hunt TE, Knodel JJ, Krupke CH, McCornack BP, Philips CR, Varenhorst AJ, Wright RJ, Koch RL (2020) Parasitism of adult Pentatomidae by Tachinidae in soybean in the North Central Region of the United States. J Insect Sci 20(3):1–4. https://doi.org/10.1093/jisesa/ieaa030

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bahlai CA, van der Werf W, O’Neal M, Hemerik L, Landis DA (2015) Shifts in dynamic regime of an invasive lady beetle are linked to the invasion and insecticidal management of its prey. Ecol Appl 25:1807–1818

    PubMed  Google Scholar 

  4. Bajwa WI, Coop L, Kogan M (2003) Integrated pest management (IPM) and internet-based information delivery systems. Neotrop Entomol 32:373–383

    Google Scholar 

  5. Bastidas AM, Setiyono TD, Dobermann A, Cassman KG, Elmore RW, Graef GL, Specht JE (2008) Soybean sowing date: the vegetative, reproductive, and agronomic impacts. Crop Sci 48(2):727–740. https://doi.org/10.2135/cropsci2006.05.0292

    Article  Google Scholar 

  6. Batistela JM, Bueno AF, Nishikawa MAN, Bueno RCOF, Hidalgo G, Silva L, Corbo E, Silva RB (2012) Re-evaluation of leaf-lamina consumer thresholds for IPM decision in short-season soybeans using artificial defoliation. Crop Prot 32:7–11

    Google Scholar 

  7. Bernardi O, Malvestiti GS, Dourado PM, Oliveira WS, Martinelli S, Berger GU, Head GP, Omoto C (2012) Assessment of the high-dose concept and level of control provided by MON 87701 x MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci 68(7):1083–1091

    CAS  PubMed  Google Scholar 

  8. Bernardi O, Dourado PM, Carvalho RA, Martinelli S, Berger GU, Head GP, Omoto C (2014) High levels of biological activity of Cry1Ac protein expressed on MON 87701 × MON 89788 soybean against Heliothis virescens (Lepidoptera:Noctuidae). Pest Manag Sci. https://doi.org/10.1002/ps.3581

  9. Board JE, Maka V, Price R, Knight D, Baur ME (2007) Development of vegetation indices for identifying insect infestations in soybean. Agron J 99:650–656

    Google Scholar 

  10. Borges M, Schmidt FGV, Sujii ER, Medeiros MA, Mori K, Zarbin PHG, Ferreira JTB (1998) Field responses of stink bugs to the natural and synthetic pheromone of the Neotropical brown stink bug, Euschistus heros, (Heteroptera: Pentatomidae). Physiol Entomol 23:202–207

    CAS  Google Scholar 

  11. Brookes G, Barfoot P (2013) The global income and production effects of genetically modified (GM) crops 1996-2011. GM Crops Food 1:74–83. https://doi.org/10.4161/gmcr.24176

    Article  Google Scholar 

  12. Brookes G, Barfoot P (2016) GM crops: global socio-economic and environmental impacts 1996–2014. PG Economics Ltd, Dorchester, p 198

  13. Brosius TR, Higley LG, Hunt TE (2007) Population dynamics of soybean aphid and biotic mortality at the edge of its range. J Econ Entomol 100:1268–1275. https://doi.org/10.1093/jee/100.4.1268

    Article  PubMed  Google Scholar 

  14. Bueno AF, Corrêa-Ferreira BS, Bueno RCOF (2010) Controle de pragas apenas com o MIP. A Granja 733:76–78

    Google Scholar 

  15. Bueno AF, Batistela MJ, Bueno RCOF, França-Neto JB, Nishikawa MAN, Filho AL (2011) Effects of integrated pest management, biological control and prophylactic use of insecticides on the management and sustainability of soybean. Crop Prot 30:937–945

    Google Scholar 

  16. Bueno AF, Paula-Moraes SV, Gazzoni DL, Pomari AF (2013) Economic thresholds in soybean-integrated pest management: old concepts, current adoption, and adequacy. Neotrop Entomol 42:439–447

    CAS  PubMed  Google Scholar 

  17. Bueno AF, Bortolotto OC, Pomari-Fernandes A, França-Neto JB (2015) Assessment of a more conservative stink bug economic threshold for managing stink bugs in Brazilian soybean production. Crop Prot 71:132–137

    Google Scholar 

  18. Bueno AF, Hayashida R, Justus CM, Menezes Junior AO, Pasini A (2018) Produtividade e qualidade de grãos de soja submetidos a diferentes intensidades de injúria nas vagens. In: CONGRESSO BRASILEIRO DE SOJA, 8, 2018, Goiânia. Inovação, tecnologias digitais e sustentabilidade da soja: anais. Brasília, Embrapa, pp 147–149

  19. Carmo EL, Bueno AF, Bueno RCOF (2010) Pesticide selectivity for the insect egg parasitoid Telenomus remus. BioControl 55:455–464

    CAS  Google Scholar 

  20. Carrière Y, Ellers-Kirk C, Sisterson M, Antilla L, Whitlow M, Dennehy TJ, Tabashnik BE (2003) Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc Natl Acad Sci U S A 100(4):1519–1523. https://doi.org/10.1073/pnas.0436708100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Carrière Y, Fabrick JA, Tabashnik BE (2016) Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol 34:291–302. https://doi.org/10.1016/j.tibtech.2015.12.011

    CAS  Article  PubMed  Google Scholar 

  22. Carter J (1979) Integrated pest management memorandum from the president. The American Presidency Project

  23. Castle S, Naranjo SE (2009) Sampling plans, selective insecticides and sustainability: the case for IPM as ‘informed pest management’. Pest Manag Sci 65:1321–1328

    CAS  PubMed  Google Scholar 

  24. Cattelan AJ, Dall’Agnol A (2018) The rapid soybean growth in Brazil. OCL 25(1):D102. https://doi.org/10.1051/ocl/2017058

    Article  Google Scholar 

  25. Companhia Nacional de Abastecimento – CONAB (2017) Acompanhamento da safra brasileira de grãos. Safra 2016/17, n° 11 – Décimo primeiro levantamento. Agosto 2017. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_08_10_11_27_12_boletim_graos_agosto_2017.pdf Accessed 30 Out 2017

  26. Companhia Nacional de Abastecimento – CONAB (2019) Acompanhamento da safra brasileira de grãos. Safra 2018/19, n° 12 – Décimo segundo levantamento. Setembro 2019. file:///C:/Users/hp/Downloads/BoletimZGraosZsetembroZ-ZresumoZ2019.pdf Accessed 02 Fev 2019

  27. Conte O, Oliveira FT, Harger N, Corrêa-Ferreira BS (2014) Resultados do Manejo Integrado de Pragas da Soja na safra 2013/14 no Paraná. Londrina, EMBRAPA-CNPSo, EMBRAPA-CNPSo, (Documentos 356), p 56

  28. Conte O, Oliveira FT, Harger N, Corrêa-Ferreira BS, Roggia S (2015) Resultados do Manejo Integrado de Pragas da Soja na safra 2014/15 no Paraná. Londrina, EMBRAPA-CNPSo, EMBRAPA-CNPSo, (Documentos 361), p 60

  29. Conte O, Oliveira FT, Harger N, Corrêa-Ferreira BS, Roggia S, Prando AM, Seratto CD (2016) Resultados do Manejo Integrado de Pragas da Soja na safra 2015/16 no Paraná. Londrina, EMBRAPA-CNPSo, (Documentos 375), p 59

  30. Conte O, Oliveira FT, Harger N, Corrêa-Ferreira BS, Roggia S, Prando AM, Seratto CD (2017) Resultados do Manejo Integrado de Pragas da Soja na safra 2016/17 no Paraná. Londrina, EMBRAPA-CNPSo, (Documentos 394), p 70

  31. Conte O, Oliveira FT, Harger N, Corrêa-Ferreira BS, Roggia S, Prando AM, Seratto CD (2018) Resultados do Manejo Integrado de Pragas da Soja na safra 2017/18 no Paraná. Londrina, EMBRAPA-CNPSo, (Documentos 402), p 66

  32. Conte O, Oliveira FT, Harger N, Corrêa-Ferreira BS, Roggia S, Prando AM, Possmai EJ, Reis EA Marx EF (2019) Resultados do Manejo Integrado de Pragas da Soja na safra 2018/19 no Paraná. Embrapa Soja, Londrina, (Documentos 416), p 63

  33. Corrêa-Ferreira BS, Alexandre TM, Pellizzaro EC, Moscardi F, Bueno AF (2010) Práticas de manejo de pragas utilizadas na soja e seu impacto sobre a cultura. Embrapa Soja, Londrina, (Circular Técnica 78), p 15

  34. Cumming GS, Spiesman BJ (2006) Regional problems need integrated solutions: pest management and conservation biology in agroecosystems. Biol Conserv 3:533–543

    Google Scholar 

  35. Dara SK (2019) The new integrated pest management paradigm for the modern age. J Integr Pest Manag 10:1–9. https://doi.org/10.1093/jipm/pmz010

    Article  Google Scholar 

  36. De Long DM (1932) Some problems encountered in the estimation of insect populations by the sweeping method. Ann Entomol Soc Am 25:13–17

    Google Scholar 

  37. Desneux N, O’Neil RJ, Yoo HJS (2006) Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator and the effects of prey dispersion, predator abundance, and temperature. Environ Entomol 35:1342–1349

    Google Scholar 

  38. Diaz-Montano J, Reese JC, Schapaugh WT, Campbell LR (2006) Characterization of antibiosis and antixenosis to the soybean aphid (Hemiptera: Aphididae) in several soybean genotypes. J Econ Entomol 99:1884–1889

    PubMed  Google Scholar 

  39. Dively GP, Venugopal PD, Bean D, Whalen J, Holmstrom K, Kuhar TP, Doughty HB, Patton T, Cissel W, Hutchison WD (2018) Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc Natl Acad Sci U S A 115(13):3320–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Douglas MR, Tooker JF (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops. Environ Sci Technol 49:5088–5097

    CAS  PubMed  Google Scholar 

  41. Dourado PM, Bacalhau FB, Amado D, Carvalho RA, Martinelli S, Head GP, Omoto C (2016) High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigera to Bt soybean in Brazil. PLoS One 1:e0161388. https://doi.org/10.1371/journal.pone.0161388

    CAS  Article  Google Scholar 

  42. Ehler LE (2006) Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag Sci 62:787–789

    CAS  PubMed  Google Scholar 

  43. Elbert A, Haas M, Springer B, Thielert W, Nauen, R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64: 1099–1105. https://doi.org/10.1002/ps.1616

  44. Elliot NC, Backoulou GF, Brewer MJ, Giles KL (2015) Ndvi to detect sugarcane aphid injury to grain sorghum. J Econ Entomol 108:1452–1455

    Google Scholar 

  45. Ellsworth PC, Fournier A, Frisvold G, Naranjo SE (2017) Chronicling the socio-economic impact of integrating biological control, technology, and knowledge over 25 years of IPM in Arizona. In: Mason PG, Gillespie DR, Vincent (eds) Proceedings of the 5th international symposium on biological control of arthropods. Langkawi, Malaysia, pp 214–216

    Google Scholar 

  46. FAOstat (2019) “Food and agriculture organization of the United Nations." Statistical database

  47. Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, dos Santos AC, Omoto C (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158

    Google Scholar 

  48. Fuxa JR, Richter AR (1999) Classical biological control in an ephemeral crop habitat with Anticarsia gemmatalis nucleopolyhedrovirus. BioControl 44:405–421

    Google Scholar 

  49. Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O’Neal M, Chacon JM, Wayo MT, Schmidt NP, Mueller EE, Heimpel GE (2009) Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol Appl 19:143–154

    CAS  PubMed  Google Scholar 

  50. Gaspar AP, Marburger DA, Mourtzinis S, Conley SP (2014) Soybean seed yield response to multiple seed treatment components across diverse environments. Agron J 106:1955–1962

    Google Scholar 

  51. Giesler LJ, Ghabrial SA, Hunt TE, Hill JH (2002) Bean pod mottle virus: a threat to U.S. soybean production. Plant Disease 1280-1289

  52. Godoy CV, Bueno AF, Gazziero Dionisio LP (2015) Brazilian soybean pest management and threats to its sustainability. Outlooks Pest Manage 26:113–117. https://doi.org/10.1564/v26_jun_06

    Article  Google Scholar 

  53. Green JM, Owen MDK (2011) Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J Agric Food Chem 59:5819–5829

    CAS  PubMed  Google Scholar 

  54. Greene JK, Davis JA (2015) Stink bugs. In: Hartman GL, Rupe JC, Sikora EJ, Domier LL, Davis JA, Steffey KL (eds) Compendium of soybean diseases and pests, 5th edn. APS Press, St. Paul, pp 146–149

    Google Scholar 

  55. Hammond RB (2006) Soybean insect IPM. In: Radcliffe EB, Hutchison WD, Cancelado RE (eds) Radcliffe’s IPM world textbook, https://ipmworld.umn.edu, University of Minnesota, St. Paul, MN, USA

  56. Hesler LS, Dashiell KE, Lundgren JG (2007) Characterization of resistance to Aphis glycines in soybean accessions. Euphytica 154:91–99

    Google Scholar 

  57. Hesler SL, Allen CK, Luttrell RG, Sappington TW, Papiernik SK (2018) Early-season pests of soybean in the United States and factors that affect their risk of infestation. J Integr Pest Manag 9:19. https://doi.org/10.1093/jipm/pmx028

    Article  Google Scholar 

  58. Higley LG, Hammond RB (1994) Seedcorn maggot. In: Higley LG, Boethel DJ (eds) Handbook of soybean insect pests. Entomol. Soc. Am, Lantham, pp 77–79

    Google Scholar 

  59. Higley LG, Pedigo LP (1996) The EIL concept. In: Higley LG, Pedigo LP (eds) Economic threshold for integrated pest management. University of Nebraska Press, Lincoln, pp 9–21

    Google Scholar 

  60. Higley LG, Peterson RKD (1996) The biological basis of the EIL. In: Higley LG, Pedigo LP (eds) Economic threshold for integrated pest management. University of Nebraska Press, Lincoln, pp 22–40

    Google Scholar 

  61. Hill CB, Li Y, Hartman GL (2004) Resistance to the soybean aphid in soybean germplasm. Crop Sci 44:98–106

    Google Scholar 

  62. Hill CB, Crull L, Herman T, Voegtlin DJ, Hartman GL (2010) A new soybean aphid (Hemiptera: Aphididae) biotype identified. J Econ Entomol 103:509–515

    CAS  PubMed  Google Scholar 

  63. Hodgson EW, Burkness EC, Hutchison WD, Ragsdale DW (2004) Enumerative and binomial sequential sampling plans for soybean aphid (Homoptera: Aphididae) in soybean. J Econ Entomol 97:2127–2136

    CAS  PubMed  Google Scholar 

  64. Hodgson EW, McCornack BP, Koch KA, Ragsdale DW, Johnson KD, O’Neal ME, Cullen EM, Kraiss HJ, DiFonzo CD, Behnken LM (2007) Field validation of speed scouting for soybean aphid. Online Crop Manag. https://doi.org/10.1094/CM-2007-0511-01-RS

  65. Hodgson EW, McCornack BP, Tilmon K, Knodel JJ (2012) Management recommendations for soybean aphid (Hemiptera: Aphididae) in the United States. J Integr Pest Manag 3:1–10

    Google Scholar 

  66. Huffman WE, Evenson RE (2006) Science for agriculture: a long-term perspective. Blackwell Publishing, Ames, p 314

    Google Scholar 

  67. Huis AV, Meerman F (1997) Can we make IPM work for resource-poor farmers in sub-Saharan Africa? Int J Pest Manage 43:313–320

    Google Scholar 

  68. Hunt TE, Higley LG, Witkowski JF (1994) Soybean growth and yield after bean leaf beetle injury to seedlings. Agron J 86(1):140–146

    Google Scholar 

  69. Hunt TE, Higley LG, Witkowski JF (1995) Bean leaf beetle injury to seedling soybean: consumption, effects of leaf expansion and economic injury levels. Agron J 87(2):183–188

    Google Scholar 

  70. Hurley T, Mitchell P (2017) Value of neonicotinoid seed treatments to US soybean farmers. Pest Manag Sci 73(1):102–112

    CAS  PubMed  Google Scholar 

  71. Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, Abrahamson M, Hamilton KL, Steffey KL, Gray ME, Hellmich RL, Kaster LV, Hunt TE, Wright RJ, Pecinovsky K, Rabaey TL, Flood BR, Raun ES (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330(6001):222–225. https://doi.org/10.1126/science.1190242

    CAS  Article  PubMed  Google Scholar 

  72. Kim KS, Hill CB, Hartman GL, Mian MAR, Diers BW (2008) Discovery of soybean aphid biotypes. Crop Sci 48:923–928

    Google Scholar 

  73. Koch RL, Potter BD, Glogoza PA, Hodgson EW, Krupke CH, Tooker JF, DiFonzo CD, Michel AP, Tilmon KJ, Prochaska TJ, Knodel JJ, Wright RJ, Hunt TE, Jensen B, Varenhorst AJ, McCornack BP, Estes KA, Spencer J (2016) Biology and economics of recommendations for insecticide-based management of soybean aphid. Plant Health Progress 17(4):265–269. https://doi.org/10.1094/PHP-RV-16-0061

    Article  Google Scholar 

  74. Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270

    CAS  PubMed  Google Scholar 

  75. Kogan M, Turnipseed SG (1987) Ecology and management of soybean arthropods. Annu Rev Entomol 32:507–538

    Google Scholar 

  76. Kogan M, Turnipseed SG, Shepard M, Oliveira EB, Borgo A (1977) Pilot insect pest management program for soybean in southern Brazil. J Econ Entomol 70:659–663

    Google Scholar 

  77. Krell RK, Fisher ML, Steffey LL (2016) A proposal for public and private partnership in extension. J Integr Pest Manag 7:1–10

    Google Scholar 

  78. Krupke CH, Alford AM, Cullen EM, Hodgson EW, Knodel JJ, McCornack B, Potter BD, Spigler MI, Tilmon K, Welch K (2017) Assessing the value and pest management window provided by neonicotinoid seed treatments for management of soybean aphid (Aphis glycines Matsumura) in the Upper Midwestern United States. Pest Manag Sci 73:2184–2193. https://doi.org/10.1002/ps.4602

    CAS  Article  PubMed  Google Scholar 

  79. Marcuzzo FFN, Rocha HM, Melo DCR (2011) Mapeamento da precipitação pluviométrica no bioma cerrado do estado do Mato Grosso. B Goiano Geogr 31:83–97

    Google Scholar 

  80. Meissle M, Mouron P, Musa T, Bigler F, Pons X, Vasileiadis VP, Otto S, Antichi D, Kiss J, Pálinkás Z, Dorner Z, van der Weide R, Groten J, Czembor E, Adamczyk J, Thibord JB, Melander B, Cordsen Nielsen G, Poulsen RT, Zimmermann O, Vershwele A, Oldenburg E (2010) Pest, pesticides use and alternative options in European maize production: current status and future prospects. J Appl Entomol 134:357–375

    Google Scholar 

  81. Mourtzinis S, Krupke CH, Esker PD, Varenhorst A, Arneson NJ, Bradley CA, Byrne AM, Chilvers MI, Giesler LJ, Herbert A, Kandel YR, Kazula MJ, Hunt C, Lindsey LE, Malone S, Mueller DS, Naeve S, Nafziger E, Reisig DD, Ross WJ, Rossman DR, Taylor S, Conley SP (2019) Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers. Sci Rep 9:11207. https://doi.org/10.1038/s41598-019-47442-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Nansen C, Zhang A, Yan G (2014) Use of variogram analysis to classify field peas with and without internal defects caused by weevil infestation. J Food Eng 123:17–22

    Google Scholar 

  83. Naranjo SE, Ellsworth PC (2009a) Fifty years of the integrated control concept: moving the model and implementation forward in Arizona. Pest Manag Sci 65:1267–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Naranjo SE, Ellsworth PC (2009b) The contribution of conservation biological control to integrated control of Bemisia tabaci in cotton. Biol Control 51(3):458–470. https://doi.org/10.1016/j.biocontrol.2009.08.006

    Article  Google Scholar 

  85. Nixon R (1972) Special message to congress outlining the 1972 environmental program. The American Presidency Project

  86. Nowierski RM, Meyer HJ (2008) Establishing inter-agency, multidisciplinary programmes. In: Koul O, Cuperus GW, Elliott N (eds) Areawide pest management: theory and implementation. CAB International, Oxfordshire, pp 34–58

    Google Scholar 

  87. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  88. Oerke EC, Dehne HW (2004) Safeguarding production – losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Google Scholar 

  89. Omoto C, Bernardi O, Salmeron E, Sorgatto RJ, Dourado PM, Crivellari A, Carvalho RA, Willse A, Martinelli S, Head GP (2016) Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag Sci 72(9):1727–1736. https://doi.org/10.1002/ps.4201

    CAS  Article  PubMed  Google Scholar 

  90. Panizzi AR (1980) Manejo de pragas: situação atual e perspectivas futuras. In: Anais do VI Congresso Brasileiro de Entomologia, Campinas, pp 303–322

  91. Panizzi AR (2013) History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotrop Entomol 42:119–127

    CAS  PubMed  Google Scholar 

  92. Panizzi AR, Corrêa BS, Newman GG, Turnipseed SG (1977a) Efeito de inseticidas na população das principais pragas da soja. An Soc Entomol Brasil 6:264–275

    CAS  Google Scholar 

  93. Panizzi AR, Corrêa BS, Gazzoni DL, Oliveira EB, Newman GG, Turnipseed SG (1977b) Insetos da soja no Brasil Embrapa, CNPSo, Londrina, PR. Bol Téc 1:20

    Google Scholar 

  94. Papiernik SK, Sappington TW, Luttrell RG, Hesler LS, Allen KC (2018) Overview: risk factors and historic levels of pressure from insect pests of seedling corn, cotton, soybean, and wheat in the United States. J Integr Pest Manag 9:1–18

    Google Scholar 

  95. Pedigo LP, Hutchins SSH, Higley LG (1986) Economic injury levels in theory and practice. Annu Rev Entomol 31:341–368

    Google Scholar 

  96. Peterson RKD, Higley LG (2002) Economic decision levels. In: Pimentel D (ed) Encylopedia of pest management. Marcel Dekker, New York, pp 228–238

    Google Scholar 

  97. Peterson RKD, Hunt TE (2003) The probabilistic economic injury level: incorporating uncertainty into pest management decision-making. J Econ Entomol 96:536–543

    PubMed  Google Scholar 

  98. Peterson RKD, Higley LG, Pedigo LP (2018) Whatever happened to IPM? Am Entomol 64:146–150

    Google Scholar 

  99. Pezzini DT, DiFonzo CD, Finke DL, Hunt TE, Knodel JJ, Krupke CH, McCornack B, Michel AP, Varenhorst AJ, Wright RJ, Koch RL (2019a) Community composition, abundance and temporal dynamics of stink bugs (Hemiptera: Pentatomidae) in soybean in the North Central Region of the U.S. J Econ Entomol 112(4):1722–1731. https://doi.org/10.1093/jee/toz099

    Article  PubMed  Google Scholar 

  100. Pezzini DT, DiFonzo CD, Finke DL, Hunt TE, Knodel JJ, Krupke CH, McCornack B, Michel AP, Moon RD, Philips CR, Varenhorst AJ, Wright RJ, Koch RL (2019b) Spatial patterns and sequential sampling plans for stink bugs (Hemiptera: Pentatomidae) in soybean in the North Central Region of the U.S. J Econ Entomol 112(4):1732–1740. https://doi.org/10.1093/jee/toz100

    Article  PubMed  Google Scholar 

  101. Pierson LM, Heng-Moss TM, Hunt TE, Reese JC (2010) Categorizing the resistance of soybean genotypes to the soybean aphid (Hemiptera: Aphididae). J Econ Entomol 103:1405–1411

    CAS  PubMed  Google Scholar 

  102. Pires CSS, Sujii ER, Schmidt FGV, Santos HM, Pais JSO, Borges M (2000) Potencial de utilização de armadilhas iscadas com o feromônio sexual do percevejo marrom, Euschistus heros: uma nova metodologia para o monitoramento populacional de percevejos praga da soja. Embrapa-Cenargen, Brasília,(Circular Técnica 7), p 24

  103. Potamitis I, Rigakis I (2015) Novel noise-robust optoacoustic sensors to identify insects through wingbeats. IEEE Sensors J 15:4621–4631

    CAS  Google Scholar 

  104. Potamitis I, Rigakis I, Fysarakis K (2015) Insect biometrics: optoacoustic signal processing and its applications to remote monitoring of McPhail type traps. PLoS One 10:01–33

    Google Scholar 

  105. Ragsdale DW, Voegtlin DJ, O’Neil RJ (2004) Soybean aphid biology in North America. Ann Entomol Soc Am 97:204–208

    Google Scholar 

  106. Ragsdale DW, McCornack BP, Venette RC, Potter BD, MacRae IV, Hodgson EW, O’Neal ME, Johnson KD, O’Neil RJ, DiFonzo CD, Hunt TE, Glogoza PA, Cullen EM (2007) Economic threshold for soybean aphid. J Econ Entomol 100:1258–1267

    CAS  PubMed  Google Scholar 

  107. Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of the soybean aphid in North America. Annu Rev Entomol 56:375–399

    CAS  PubMed  Google Scholar 

  108. Romeis J, Naranjo SE, Meissle M, Shelton AM (2018) Genetically engineered crops help support conservation biological control. Biol Control 130:136–154. https://doi.org/10.1016/j.biocontrol.2018.10.001

    Article  Google Scholar 

  109. Sappington T (2014) Emerging issues in integrated pest management implementation and adoption in the North Central USA. In: Peshin R, Pimentel D (eds) Integrated Pest management. Springer, Dordrecht, pp 65–97. https://doi.org/10.1007/978-94-007-7802-3_4

    Google Scholar 

  110. Schmidt FGV, Pires CSS, Sujii ER, Borges M, Pantaleão DC, Lacerda ALM, Azevedo VCR (2003) Comportamento e captura das fêmeas de Euschistus heros em armadilhas iscadas com feromônio sexual. Embrapa-Cenargen, Brasília, (Comunicado Técnico 93), 4 p

  111. Smelser RB, Pedigo LP (1992) Soybean seed yield and quality reduction by bean leaf beetle (Coleoptera: Chrysomelidae) pod injury. J Econ Entomol 85:2399–2403

    Google Scholar 

  112. Song F, Swinton SM (2009) Returns to integrated pest management research and outreach for soybean aphid. J Econ Entomol 102:2116–2125

    PubMed  Google Scholar 

  113. Steffey KL (2015) Insects and their management. In: Hartman GL, Rupe JC, Sikora EJ, Domier LL, Davis JA, Steffey KL (eds) Compendium of soybean diseases and pests, 5th edn. APS Press, St. Paul, pp 136–137

    Google Scholar 

  114. Stern VM, Smith RF, Van Den Bosch R, Hagen KS (1959) The integrated control concept. Hilgardia 29:81–101

    CAS  Google Scholar 

  115. Turnipseed SG (1974) Manejo das pragas da soja no Sul do Brasil. Trigo-Soja 1:4–7

    Google Scholar 

  116. United States Department of Agriculture – USDA (2020) Oilseeds: World Markets and Trade. https://usda.library.cornell.edu/usda-esmis/files/tx31qh68h/vt151125j/44558w98r/oilseeds.pdf. Accessed 02 Fev 2020

  117. USDA NASS (USDA, National Agricultural Statistics Service) (2018) Crop production. http://www.nass.usda.gov/. Accessed 5 July 2019

  118. USGS (United States Geological Survey) (2018) National Water-Quality Assessment (NAWQA) Project Pesticide Use Maps, http://water.usgs.gov/nawqa/pnsp/usage/maps. Accessed 02 Dec 2019

  119. Varella AC, Menezes-Netto AC, de Souza Alonso JD, Caixeta DF, Peterson RKD, Fernandes OA (2015) Mortality dynamics of Spodoptera frugiperda (Lepidoptera: Noctuidae) immatures in maize. PLoS One 10:1–12

    Google Scholar 

  120. Wan P, Huang Y, Tabashnik BE, Huang M, Wu K (2012) The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China. PLoS One 7(7):e42004. https://doi.org/10.1371/journal.pone.0042004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Wang SL (2014) Cooperative extension system: trend and economic impacts on U.S. agriculture. Choices 1:1–8

    Google Scholar 

  122. Wang SL, Ball E, Fulginiti L, Plastina A (2012) Accounting for the impacts of public research, r&d spill-ins, extension, and roads in U.S. agricultural productivity growth. In: Fuglie KO, Wang SL, Ball VE (eds) Agricultural productivity: an international perspective. Cabi, Cambridge, pp 13–31

    Google Scholar 

  123. Way MO (1994) Status of soybean insect pests in the USA. In: Higley LG, Boethel DJ (eds) Handbook of soybean insect pests. Entomol Soc Am, Lanham, pp 15–16

    Google Scholar 

  124. Wen C, Wu D, Hu H, Pan W (2015) Pose estimation-dependent identification method for field moth images using deep learning architecture. Biosyst Eng 136:117–128

    Google Scholar 

  125. Williams RN, Panaia JR, Moscardi F, Sichmann W, Allen GE, Greene GL, Lasca DHC (1973) Principais pragas da soja no estado de São Paulo: reconhecimento, métodos de levantamento e melhor época de controle. Secr Agric, CATI, p 18

    Google Scholar 

  126. Wilson LJ, Whitehouse MEA, Herron GA (2018) The management of insect pests in Australian cotton: an evolving story. Annu Rev Entomol 63(1):215–237

    CAS  PubMed  Google Scholar 

  127. Witkowski JF, Echtenkamp GW (1996) Influence of planting date and insecticide on bean leaf beetle (Coleoptera: Chrysomelidae) abundance and damage in Nebraska. J Econ Entomol 89:189–196

    Google Scholar 

  128. Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin–containing cotton. Science 321(5896):1676–1678. https://doi.org/10.1126/science.1160550

    CAS  Article  PubMed  Google Scholar 

  129. Yano SAC, Specht A, Moscardi F, Carvalho RA, Dourado PM, Martinelli S, Head GP, Sosa-Gómez D (2016) High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil. Pest Manag Sci 72(8):1578–1584

    CAS  PubMed  Google Scholar 

  130. Zalucki MP, Adamson D, Furlong MJ (2009) The future of IPM: whither or wither? Aust J Entomol 48:85–96. https://doi.org/10.1111/j.1440-6055.2009.00690.x

    Article  Google Scholar 

  131. Zanon A, Streck NA, Richter GL, Becker CC, Da Rocha TSM, Cera JC, Winck JEM, Cardoso ÂP, Tagliapietra EL, Weber PS (2015) Contribuição das ramificações e a evolução do índice de área foliar em cultivares modernas de soja. Bragantia. 74:279–290. https://doi.org/10.1590/1678-4499.0463

    Article  Google Scholar 

  132. Zhang W, Lu Y, van der Werf W, Huang J, Wu F, Zhou K, Deng X, Jiang Y, Wu K, Rosegrant MW (2018) Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. Proc Natl Acad Sci U S A 115(33):E7700–E7709. https://doi.org/10.7910/DVN/QVBQQQ

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank “Empresa Brasileira de Pesquisa Agropecuária” (Embrapa) and the “University of Nebraska – Lincoln” (UNL) University of Nebraska Linlcon for all the support given to the authors and to the Brazilian Sponsor Agencies “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) and “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) for financial support and scholarships.

Author information

Affiliations

Authors

Contributions

AF Bueno, AR Panizzi, PM Dourado, RM Pitta, and J. Gonçalves wrote the Brazilian soybean information. TE Hunt wrote the US information. All authors have read, edited, and approved the whole manuscript.

Corresponding author

Correspondence to A F BUENO.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Lessando Moreira Gontijo – UFV

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

BUENO, A.F., PANIZZI, A.R., Hunt, T.E. et al. Challenges for Adoption of Integrated Pest Management (IPM): the Soybean Example. Neotrop Entomol 50, 5–20 (2021). https://doi.org/10.1007/s13744-020-00792-9

Download citation

Keywords

  • sustainability
  • insecticides
  • economic thresholds
  • crop management
  • food security