Skip to main content

Advertisement

Log in

Impact of Temperature Variant on Survival of Aedes albopictus Skuse (Diptera: Culicidae): Implications on Thermotolerance and Acclimation

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Aedes albopictus (Skuse 1894) is prevalent in the urban/peri-urban Port Blair, posing a public health threat, during past outbreaks of chikungunya (2006) and dengue (2010). Despite its vector potential, information on the biology is scanty. Therefore, impact of temperature on survival of immature stages, under laboratory conditions, was studied on F1 population of Andamans. Ae. albopictus larvae were exposed to static temperatures viz. 37°C, 39°C, 41°C, 43°C and 45°C, and the lethal time to cause 50% (LT50) and 90% mortality (LT90) was computed. To assess adaptive thermotolerance, larvae exposed (37°C and 39°C) were re-exposed to higher temperatures (43°C and 45°C). All larvae survived at 37°C and 39°C for the entire exposure period of 420 min, while variable mortality was observed at 41°C, 43°C and 45°C. Larvae re-exposed to 43°C and 45°C showed an increase in thermotolerance with respect to non-adapted larvae. The results are discussed in the context of survival, development and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Alto BW, Bettinardi D (2013) Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. Am J Trop Med Hyg 88:497–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Alto BW, Juliano SA (2001a) Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J Med Entomol 38:646–656

    Article  CAS  PubMed  Google Scholar 

  • Alto BW, Juliano SA (2001b) Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J Med Entomol 38:548–556

    Article  CAS  PubMed  Google Scholar 

  • Andrewartha HG (1971) Introduction to the study of animal populations. The University of Chicago Press, Chicago

    Google Scholar 

  • Barraud PJ (1923) A revision of the Culicine mosquitoes in India: part I. Indian J Med Res 10:772–788

    Google Scholar 

  • Barraud PJ (1931) Notes on some Indian mosquitoes of the subgenus Stegomyia with descriptions of Uranotaenia species. Indian J Med Res 19:221–227

    Google Scholar 

  • Bayoh MN, Lindsay SW (2004) Temperature-related duration of aquatic stages of the Afro tropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol 18:174–179

    Article  CAS  PubMed  Google Scholar 

  • Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis 7:76–85

    Article  PubMed  Google Scholar 

  • Brady OJ, Golding N, Pigott DM, Kraemer MU, Messina JP, Reiner RC Jr, Scott TW, Smith DL, Gething PW, Hay SI (2014) Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors 22:7–338

    Google Scholar 

  • Busvine JN (1971) A critical review of the techniques for testing insecticides, 2nd edn. Commonwealth Agricultural Bureaux, Slough 345 pp

    Google Scholar 

  • Chang LH, Hsu EL, Teng HJ, Ho CM (2007) Differential survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. J Med Entomol 44:205–210

    Article  PubMed  Google Scholar 

  • Crans WJ, Sprenger DA, Mahmood F (1996) The blood-feeding habits of Aedes sollicitans (Walker) in relation to Eastern Equine Encephalitis virus in coastal areas of New Jersey, II. Results of experiments with caged mosquitoes and the effects of temperature and physiological age on host selection. J Vector Ecol 21:1–5

    Google Scholar 

  • Day JF, Ramsey AM, Zhang J (1990) Environmentally mediated seasonal variation in mosquito body size. Environ Entomol 19:469–473

    Article  Google Scholar 

  • Delatte H, Gimonneau G, Triboire A, Fontenille D (2009) Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol 46:33–34

    Article  CAS  PubMed  Google Scholar 

  • Dutta P, Khan SA, Sharma CK, Doloi PK, Hazarika NC, Mahanta J (1998) Distribution of potential dengue vectors in major townships along the national highways and trunk roads of Northeast India. Southeast Asian J Trop Med Public Health 29:173–176

    CAS  PubMed  Google Scholar 

  • Foote RH, Cook DR (1959) Mosquitoes of medical importance. Agricultural Research Service, U.S. Department of Agriculture. Hand book no 152

  • Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227

    Article  CAS  PubMed  Google Scholar 

  • Gunathilaka N, Ranathunge T, Udayanga L, Abeyewickreme W (2017) Efficacy of blood sources and artificial blood feeding methods in rearing of Aedes aegypti (Diptera: Culicidae) for sterile insect technique and incompatible insect technique approaches in Sri Lanka. Biomed Res Int 2017:1–7. https://doi.org/10.1155/2017/3196924

    Article  CAS  Google Scholar 

  • Hawley WA (1985) The effect of larval density on adult longevity of a mosquito, Aedes sierrensis: epidemiological consequences. J Anim Ecol 54:955–964

    Article  Google Scholar 

  • Hawley WA (1988) The biology of Aedes albopictus. J Am Mosq Control Assoc 4:2–39

    Google Scholar 

  • Hien DS (1975) Biology of Aedes aegypti (L,1762) and Aedes albopictus (Skuse, 1865) (Diptera, Culicidae). Acta Parasitol Pol 23:553–568

    Google Scholar 

  • Hurlbut HS (1973) The effect of environmental temperature upon the transmission of St. Louis encephalitis virus by Culex pipiens quinquefasciatus. J Med Entomol 10:1–12

    Article  CAS  PubMed  Google Scholar 

  • Joshi V, Singh M, Mourya DT (2003) Studies on determination of possible role of Aedes albopictus mosquitoes in maintenance of urban cycle of dengue. Desert Medicine Research Centre (Indian Council of Medical Research) Jodhpur. Annu Rep:58–65

  • Kartick C, Bharathi GSJ, Surya P, Anwesh M, Arun S, Muruganandam N, Avijit R, Vijayachari P (2017) Outbreak investigation of fever mimicking dengue in Havelock Island, an important tourist destination in the Andaman & Nicobar Archipelago, 2014. Epidemiol Infect 145:1437–1442

    Article  CAS  PubMed  Google Scholar 

  • Kumar NP, Joseph R, Kamaraj T, Jambulingam P (2008) A226V mutation in virus during the 2007 chikungunya outbreak in Kerala, India. J Gen Virol 89:1945–1948

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Kumar K, Chauhan LS (2011) First dengue virus detection in Aedes albopictus from Delhi, India: it’s breeding ecology and role in dengue transmission. Tropical Med Int Health 16:949–954

    Article  Google Scholar 

  • Yiji L, Fatmata K, Guofa Z, Santhosh P, Chunyuan L, Yanxia L, Yanhe Z, Lijie Y, Guiyun Y, Xiao GC (2014) Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis 8(11):e3301

    Article  Google Scholar 

  • Lim KW, Sit NW, Norzahira R, Sing KW, Wong HM, Chew HS, Firdaus R, Cheryl JA, Suria M, Mahathavan M, Nazni WA, Lee HL, McKemy A, Vasan SS (2010) Dengue vector surveillance in insular settlements of PulauKetam, Selangor, Malaysia. Trop Biomed 27:185–192

    CAS  PubMed  Google Scholar 

  • Lindsay SW, Birley MH (1996) Climate change and malaria transmission. Ann Trop Med Parasitol 90:573–588

    Article  CAS  PubMed  Google Scholar 

  • Mavundza EJ, Maharaj R, Chukwujekwu JC, Finnie JF, Staden JV (2013) Larvicidal activity against Anopheles arabiensis of 10 South African plants that are traditionally used as mosquito repellents. S Afr J Bot 88:86–89

    Article  Google Scholar 

  • Manimunda SP, Singh SS, Sugunan AP, Singh O, Roy S, Shriram AN, Bharadwaj AP, Shah WA, Vijayachari P (2007) Chikungunya fever, Andaman and Nicobar islands, India. Emerg Infect Dis 13:1259–1260

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell CJ (1995) The role of Aedes albopictus as an arbovirus vector. Parassitologia 37:109–113

    CAS  PubMed  Google Scholar 

  • Mogi M, Miyagi I, Abadi K, Syafruddin (1996) Inter and intraspecifc variation in resistance to desiccation by adult Aedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia. J Med Entomol 33:53–57

    Article  CAS  PubMed  Google Scholar 

  • Mourya DT, Yadav P, Mishra AC (2004) Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Am J Trop Med Hyg 70:346–350

    Article  CAS  PubMed  Google Scholar 

  • Nagpal BN, Sharma VP (1983) Mosquitoes of Andaman islands. Indian J Malariol 20:7–13

    Google Scholar 

  • NVBDCP (2019) http://www.nvbdcp.gov.in/index1.php?lang=1&level=1&sublinkid=5776&lid=3690. accessed on 18th January 2019.

  • Parker MB (1986) Hatchability of eggs of Aedes taeniorhynchus (Diptera: Culicidae): effects of different temperatures and photoperiods during embryogenesis. Ann Entomol Soc Am 79:925–930

    Article  Google Scholar 

  • Patil NS, Lole KS, Deobagkar DN (1996) Adaptive thermo tolerance and induced cross tolerance to propoxur insecticide in mosquitoes. Med Vet Entomol 10:277–282

    Article  CAS  PubMed  Google Scholar 

  • Rai KS (1991) Aedes albopictus in the Americas. Annu Rev Entomol 36:459–484

    Article  CAS  PubMed  Google Scholar 

  • Rao RT (1963) Arthropod vectors of viruses of man and animals in India. Bull Nat Inst Sci India 24:217–227

    Google Scholar 

  • Reeves WC, Hardy JL, Reisen WK, Milby MM (1994) Potential effect of global warming on mosquito borne arboviruses. J Med Entomol 31:323–332

    Article  CAS  PubMed  Google Scholar 

  • Rozilawati H, Zairi J, Adanan CR (2007) Seasonal abundance of Aedes albopictus in selected urban and suburban areas in Penang, Malaysia. Trop Biomed 24:83–94

    CAS  PubMed  Google Scholar 

  • Rueda LM, Patel KJ, Axtell RC, Stinner RE (1990) Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 27:892–898

    Article  CAS  PubMed  Google Scholar 

  • Samuel PP, Krishnamoorthi R, Hamzakoya KK, Aggarwal CS (2009) Entomo-epidemiological investigations on chikungunya outbreak in the Lakshadweep islands, Indian Ocean. Indian J Med Res 129:442–445

    PubMed  Google Scholar 

  • Cunze S, Kochmann J, Koch LK, Klimpel S (2018) Niche conservatism of Aedes albopictus and Aedes aegypti - two mosquito species with different invasion histories. Sci Rep 8:7733. https://doi.org/10.1038/s41598-018-26092-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivan A, Shriram AN, Sugunan AP, Anwesh M, Muruganandam N, Kartik C, Vijayachari P (2016) Natural transmission of dengue virus serotype 3 by Aedes albopictus (Skuse) during an outbreak in Havelock Island: entomological characteristics. Acta Trop 156:122–129. https://doi.org/10.1016/j.actatropica.2016.01.015

  • Sivan A, Shriram AN, Muruganandam N, Thamizhmani R (2017) Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress. Acta Trop 167:121–127

    Article  CAS  PubMed  Google Scholar 

  • Shriram AN, Sehgal SC (1999) Aedes aegypti (L) in Port Blair, Andaman and Nicobar islands-distribution and larval ecology. J Commun Disord 31:185–192

    CAS  Google Scholar 

  • Shriram AN, Sugunan AP, Manimunda SP, Vijayachari P (2009) Community-centred approach for the control of Aedes Spp in a peri-urban zone in the Andaman and Nicobar Islands using Temephos. Natl Med J India 22:116–120

    CAS  PubMed  Google Scholar 

  • Shriram AN, Sugunan AP, Vijayachari P (2008) Infiltration of Aedes aegypti into peri-urban areas in South Andaman. Indian J Med Res 127:618–620

    CAS  PubMed  Google Scholar 

  • Shriram AN, Sivan A, Sugunan AP (2018) Spatial distribution of Aedes aegypti and Aedes albopictus in relation to geo-ecological features in South Andaman, Andaman and Nicobar Islands, India. Bull Entomol Res 108:166–174

    Article  CAS  PubMed  Google Scholar 

  • Sota T, Mogi M (1992a) Survival time and resistance to desiccation of diapause and non diapause eggs of temperate Aedes (Stegomyia) mosquitoes. Entomol Exp Appl 63:155–161

    Article  Google Scholar 

  • Sota T, Mogi M (1992b) Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia (Berl) 90:353–358

    Article  CAS  Google Scholar 

  • Steinwascher K (1982) Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti. Environ Entomol 11:150–153

    Article  Google Scholar 

  • Tewari SC, Thenmozhi V, Katholi CR, Manavalan R, Munirathinam A, Gajanana A (2004) Dengue vector prevalence and virus infection in a rural area in South India. Tropical Med Int Health 9:499–507

    Article  CAS  Google Scholar 

  • Vijayachari P, Singh SS, Sugunan AP, Shriram AN, Manimunda SP, Bharadwaj AP, Singhania M, Gladeus C, Bhattacharya D (2011) Emergence of dengue in Andaman and Nicobar archipelago: eco-epidemiological perspective. Indian J Med Res 134:235–237

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. P Vijayachari, the Director, Regional Medical Research Centre (ICMR), Port Blair, for extending all the facilities. Authors acknowledge the suggestions given by Dr. K Raghavendra, Scientist “G” at the National Institute of Malaria Research, New Delhi. Technical assistance rendered by the staff of the Division of Medical Entomology and Vector Borne Diseases is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

A. Sivan and A.N. Shriram planned, designed and executed experimental work and wrote the original draft of the manuscript. P. Vanamail and A.P. Sugunan conducted the data analysis. Finally, all the authors reviewed and edited the manuscript.

Corresponding author

Correspondence to A N Shriram.

Additional information

Edited by Rodrigo Gurgel Gonçalves – UnB

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivan, A., Shriram, A.N., Vanamail, P. et al. Impact of Temperature Variant on Survival of Aedes albopictus Skuse (Diptera: Culicidae): Implications on Thermotolerance and Acclimation. Neotrop Entomol 48, 561–571 (2019). https://doi.org/10.1007/s13744-019-00680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-019-00680-x

Keywords

Navigation