Skip to main content
Log in

Shredder Chironomid Diets Are Influenced by Decomposition Rates of Different Leaf Litter Species

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The diet of shredder chironomid larvae depends on the local and temporal conditions of the food resources. We analysed the gut content of shredder chironomid larvae that colonised the leaf litter of three riparian species: Hedychium coronarium, Pteridium arachnoideum and Magnolia ovata. We hypothesised that the differences in the decomposition rates of leaf litter species influence the consumption of plant tissue by shredder chironomid taxa over time. We incubated perforated bottles with each leaf species within four low-order streams during 1st, 3rd, 7th, 22nd, 36th, 55th and 85th day of exposure. We used an analysis of covariance (ANCOVA) to compare differences in the percentage of AFDM (ash-free dry mass) and AOM (amorphous organic matter) among leaf litter species. To verify differences in the larvae abundance, we used a general linear model, and to test if there were feeding preferences for AFDM and AOM, we used the adapted Paloheimo selectivity index. Magnolia ovata presented a higher quantity of AOM followed by H. coronarium and P. arachnoideum. Pteridium arachnoideum showed a higher AFDM followed by H. coronarium and M. ovata. The larvae abundance was different among plant species and varied significantly with AFDM and AOM quantities. The consumption of plant tissue by shredder chironomid differed temporarily and among riparian species, where facultative or strict shredders showed strong association with different leaf litter species. The amount of AFDM and AOM in plant tissues explained these differences. We highlighted that shredder chironomids displayed an important role as co-participants in the decomposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Allan JD, Castillo MM (2007) Stream ecology: structure and function of running waters. Springer, Dordrecht, pp 197–227

    Book  Google Scholar 

  • Alonso-Amelot ME, Oliveros A, Calcagno MP, Arellano E (2001) Bracken adaptation mechanisms and xenobiotic chemistry. Pure Appl Chem 73:549–553

    Article  CAS  Google Scholar 

  • ASTM D2974-87-14 (2014) Standard test methods for moisture, ash, and organic matter of peat and other organic soils. American Society for Testing & Materials, West Conshohocken

    Google Scholar 

  • Backer TT III, Lockaby BG, Conner WH, Meier CE, Stanturf JA, Burke MK (2001) Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. Soil Sci Soc Am J 65:1334–1347

    Article  Google Scholar 

  • Bärlocher F (1997) Pitfalls of traditional techniques when studying decomposition of vascular plant remains in aquatic habitats. Limnetica 13:1–11

    Google Scholar 

  • Berg HB (1995) Larval food and feeding behaviour. In: Armitage PD, Cranston PS, Pinder LCV (eds) The Chironomidae: biology and ecology of non-biting midges. Chapman & Hall, London, pp 1–584

    Google Scholar 

  • Bianchini JI (2003) Modelos de crescimento e decomposição de macrófitas aquáticas. In: Thomaz SM, Bini LM (eds) Ecologia e Manejo de Macrófitas Aquáticas. EDUEM, Maringá, pp 85–126

    Google Scholar 

  • Biasi C, Tonin AM, Restello RM, Hepp LU (2013) The colonization of leaf litter by Chironomidae (Diptera): the influence of chemical quality and exposure duration in a subtropical stream. Limnologica 43:427–433

    Article  CAS  Google Scholar 

  • Borkent A (1984) The systematics and phylogeny of the Stenochironomus complex (Xestochironomus, Harrisius and Stenochironomus) (Diptera: Chironomidae). Mem Ent Soc Can 128:1–269

    Google Scholar 

  • Buttakka CMM, Grybkowska M, Pinha GD, Takeda AM (2014) Habitat and trophic relatshionship of Chironomidae insect larvae from the Sepotuba River Basin, Pantanal of Mato Grosso, Brazil. Braz J Biol 74:395–407

    Article  Google Scholar 

  • Callisto M, Gonçalves JF Jr, Graça MAS (2007) Leaf litter as a possible food source for chironomids (Diptera) in Brazilian and Portuguese headwater streams. Rev Bras Zool 24:442–448

    Article  Google Scholar 

  • Cheshire KIM, Boyero LUZ, Pearson RG (2005) Food webs in tropical Australian streams: shredders are not scarce. Freshw Biol 50:748–769

    Article  Google Scholar 

  • Choong MF, Lucas PW, Ong JSY, Pereira B, Tan HTW, Turner IM (1992) Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytol 121:597–610

    Article  Google Scholar 

  • Cuffney TF, Wallace JB, Lugthart J (1990) Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshw Biol 23:281–299

    Article  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Evol 10:147–172

    Article  Google Scholar 

  • Cummins KW, Merritt RW, Andrade PCN (2005) The use of invertebrate functional groups to characterize ecosystem attributes in select streams and rivers in south Brazil. Stud Neotrop Fauna Environ 40:68–89

    Article  Google Scholar 

  • Debusk WF, Reddy KR (2005) Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochemistry 75:217–240

    Article  Google Scholar 

  • Galizzi MC, Marchese M (2007) Descomposición de hojas de Tessaria integrifolia (Asteracea) y colonización por invertebrados em um cauce secundário del río Paraná médio. Interciencia 32:535–540

    Google Scholar 

  • Galizzi MC, Zilli F, Marchese M (2012) Diet and functional feeding groups of Chironomidae (Diptera) in the Middle Paraná River floodplain (Argentina). Iheringia Ser Zool 102:117–121

    Article  Google Scholar 

  • Gonçalves JF Jr, Esteves FA, Callisto M (2003) Chironomids colonization on Nymphaea ampla L. detritus during a degradative ecological succession experiment in a Brazilian coastal lagoon. Act Limnol Bras 15:21–27

    Google Scholar 

  • Gonçalves JF, Graça MAS, Callisto M (2006) Litter breakdown dynamics at three streams in temperate, mediterranean and tropical Cerrado climates. J N Am Benthol Soc 25:344–355

    Article  Google Scholar 

  • Gonçalves JF, Graça MAS, Callisto M (2007) Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshw Biol 52:1440–1451

    Article  CAS  Google Scholar 

  • Gonçalves JF, Rezende RS, França J, Callisto M (2012) Invertebrate colonization during leaf processing of native, exotic and artificial detritus in a tropical stream. Mar Freshw Res 63:428–439

    Article  Google Scholar 

  • Goya JF, Frangi JL, Perez C, Tea FD (2008) Decomposition and nutrient release from leaf litter in Eucalyptus grandis plantations on three different soils in Entre Ríos, Argentina. Bosque 29:217–226

    Google Scholar 

  • Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393

    Article  Google Scholar 

  • Graça MA, Ferreira V, Canhoto C, Encalada AC, Guerrero-Bolãno F, Wantzen KM, Boyero L (2015) A conceptual model of litter breakdown in low order streams. Int Rev Hydrobiol 100:1–12

    Article  CAS  Google Scholar 

  • Hepp LU, Biasi C, Milesi SV, Veiga FO, Restello RM (2008) Chironomidae (Diptera) larvae associated to Eucalyptus globulus and Eugenia uniflora leaf litter in a subtropical stream (Rio Grande do Sul, Brazil). Act Limnol Bras 20:345–350

    Google Scholar 

  • Hoffmann A (2005) Dynamics of fine particulate organic matter (FPOM) and macroinvertebrates in natural and artificial leaf packs. Hydrobiologia 549:167–178

    Article  Google Scholar 

  • Howard JJ (1988) Leafcutting ant diet selection: relative influence of leaf chemistry and physical features. Ecology 69:250–260

    Article  Google Scholar 

  • Jackson JK, Sweeney BW (1995) Egg and larval development times for 35 species of tropical stream insects from Costa Rica. J N Am Benthol Soc 14:115–130

    Article  Google Scholar 

  • Janke H, Trivinho-Strixino S (2007) Colonization of leaf litter by aquatic macroinvertebrates: a study in a low order tropical stream. Act Limnol Brasil 19:109–115

    Google Scholar 

  • Johnson PN (2001) Vegetation recovery after fire on a southern New Zealand peatland. New Zeal J Bot 39:251–267

    Article  Google Scholar 

  • Kissmann KG, Groth D (1991) Plantas infestantes e nocivas. Basf Brasileira, São Paulo, pp 590–593

    Google Scholar 

  • Koroiva R, Souza CWO, Toyama D, Henrique-Silva F, Fonseca-Gessner AA (2013) Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae. Genet Mol Res 12:3421–3434

    Article  CAS  PubMed  Google Scholar 

  • Leite-Rossi LA, Trivinho-Strixino S (2012) Are sugar cane leaf-detritus well colonized by aquatic macroinvertebrates? Act Limnol Brasil 24:303–313

    Article  Google Scholar 

  • Leite-Rossi LA, Saito VS, Cunha-Santino MB, Trivinho-Strixino S (2016) How does leaf litter chemistry influence its decomposition and colonization by shredder Chironomidae (Diptera) larvae in a tropical stream? Hydrobiologia 77:119–130

    Article  CAS  Google Scholar 

  • Ligeiro R, Moretti MS, Gonçalves Jr JF, Callisto M (2010) What is more important for invertebrate colonization in a stream with low-quality inputs: exposure time or leaf species? Hydrobiologia 654:125–136

    Article  Google Scholar 

  • Lorenzi H (2002) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Instituto Plantarum, Nova Odessa, pp 1–368

    Google Scholar 

  • Lorenzi H, Souza H (2001) Plantas ornamentais. Instituto Plantarum, São Paulo, pp 1–791

    Google Scholar 

  • Lowman MD, Box JD (1983) Variation in leaf toughness and phenolic content among five species of Australian rain forest trees. Austral Ecol 8:17–25

    Article  CAS  Google Scholar 

  • Marrs RH, Johnson SW, Le-Duc MG (1998) Control of bracken and restoration of heathland VI. The response of bracken fronds to 18 years of continued bracken control or 6 years of control followed by recovery. J Appl Ecol 35:479–490

    Article  Google Scholar 

  • Marrs RH, Le-Duc MG, Mitchell RJ, Goddard D, Paterson S, Pakeman RJ (2000) The ecology of bracken: its role in succession and implications for control. Ann Bot 85:3–15

    Article  Google Scholar 

  • Mathuriau C, Chauvet E (2002) Breakdown of leaf litter in a neotropical stream. J N Am Benthol Soc 21:384–396

    Article  Google Scholar 

  • Nessimian JL, Sanseverino A (1998) Trophic functional characterization of chironomidae larvae (Diptera: Chironomidae) in a first order stream at the montain region of Rio de Janeiro state, Brazil. Verh Internat Verein Limnol 26:2115–2119

    Google Scholar 

  • Page CN (1976) The taxonomy and phytogeography of bracken. Bot J Linn Soc 73:1–34

    Article  Google Scholar 

  • Paloheimo JE (1979) Indices of food type prefer ence by a predator. J Fish Res Board Can 36:470–473

    Article  Google Scholar 

  • Petersen Jr RC (1992) The RCE: a riparian, channel, and environmental inventory for small streams in the agricultural landscape. Freshw Biol 27:292–306

    Article  Google Scholar 

  • Pio Corrêa M, Pena LA (1984) Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Instituto Brasileiro de Desenvolvimento Florestal, Rio de Janeiro, pp, pp 1874–1934

    Google Scholar 

  • Portela RCQ, Matos DMS, Siqueira LP, Braz MIG, Silva-Lima L, Marrs RH (2009) Variation in aboveground biomass and necromass of two invasive species in the Atlantic rainforest, Southeast Brazil. Act Bot Brasil 23:571–577

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1993) Numerical recipes in C: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  • Ramseyer U, Marchese M (2009) Leaf litter of Erythrina crista-galli L. (ceibo): trophic and substratum resources for benthic invertebrates in a secondary channel of the Middle Paraná River. Limnetica 28:1–10

    Google Scholar 

  • Reuss NS, Ladislav H, Gaute V, Michelsen A, Pedersen O, Brodersen KP (2014) Microhabitat influence on chironomid community structure and stable isotope signatures in West Greenland lakes. Hydrobiologia 730:59–77

    Article  CAS  Google Scholar 

  • Saito VS, Fonseca-Gessner AA (2014) Taxonomic compositions and feeding habits of Chironomidae in Cerrado streams (Southeast Brazil): impacts of land use changes. Act Limnol Brasil 26:35–46

    Article  Google Scholar 

  • Sanseverino AM, Nessimian JL (2008) Larvas de Chironomidae (Diptera) em depósitos de folhiço submerso em um riacho de primeira ordem da Mata Atlântica (Rio de Janeiro, Brasil). Rev Bras Entomol 52:95–104

    Article  Google Scholar 

  • Shieh SH, Hsu CB, Wang CP, Yang PS (2007) Leaf breakdown in a subtropical stream riffle and its association with macroinvertebrates. Zool Stud 46:609–621

    Google Scholar 

  • Silva USR, Silva-Matos DM (2006) The invasion of Pteridium aquilinum and the impoverishment of the seed bank in fire prone areas of Brazilian Atlantic Forest. Biodivers Conserv 15:3035–3043

    Article  Google Scholar 

  • Silva-Matos DM, Xavier RO, Tiberio FCS, Marrs RH (2012) A comparative study of resource allocation in Pteridium in different Brazilian ecosystems and its relationship with European studies. Braz J Biol 74:156–165

    Article  Google Scholar 

  • Silva-Matos DM, Belinato TA (2010) Interference of Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) on the establishment of rainforest trees. Braz J Biol 70:311–316

    Article  CAS  PubMed  Google Scholar 

  • Silveira LS, Rosa BF, Gonçalves EA, Alves RG (2015) Influence of pools and riffles on Chironomidae diversity in headwater streams of the Atlantic Forest. Neotrop Entomol 44:423–429

    Article  CAS  PubMed  Google Scholar 

  • Siqueira T, Trivinho-Strixino S (2005) Diversidade de Chironomidae (Diptera) em dois córregos de baixa ordem na região central do Estado de São Paulo, através da coleta de exúvias de pupa. Rev Bras Entomol 49:531–534

    Article  Google Scholar 

  • Strixino G, Trivinho-Strixino S (2006) Herpobentos e haptobentos de lagoas marginais da estação ecológica de Jataí (Luiz Antônio, SP). In: Santos JE, Pires JSR, Moschini LE (eds) Estudos Integrados em Ecossistema Estação Ecológica de Jataí. EDUFSCar, São Carlos, SP, pp 20–44

    Google Scholar 

  • Tomanova S, Goitia E, Helesic J (2006) Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556:251–264

    Article  Google Scholar 

  • Trivinho-Strixino S, Strixino G (1998) Chironomidae (Diptera) associados a troncos de árvores submersos. Rev Bras Entomol 41:173–178

    Google Scholar 

  • Trivinho-Strixino S (2014) Ordem Diptera. Família Chironomidae. Guia de identificação de larvas. In: Hamada N, Nessimian JL, Querino RB (eds) Insetos Aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus, pp 457–660

    Google Scholar 

  • Tundisi JG, Matsumara-Tundisi T, Pareschi DC, Luzia AP, Von Haeling PH, Frollini EH (2008) The Tietê/Jacaré watershed: a case study in research and management. Estu Avanc 22:159–172

    Article  Google Scholar 

  • Valdemarsen T, Quintana CO, Kristensen E, Flindt MR (2014) Recovery of organic-enriched sediments through microbial degradation: implications for eutrophic estuaries. Mar Ecol Progr Ser 503:41–58

    Article  CAS  Google Scholar 

  • Valente-Neto F, Koroiva R, Fonseca-Gessner AA, Roque FO (2015) The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquat Ecol 49:115–125

    Article  CAS  Google Scholar 

  • Vanotte RL, Minshall GW, Cummins KW, Sedell JR, Cushing CF (1980) The river continuum concept. Can J Fish Aquatic Sci 37:817–822

    Article  Google Scholar 

  • Wantzen KM, Wagner R (2006) Detritus processing by invertebrate shredders: a neotropical-temperate comparison. J N Am Benthol Soc 25:216–232

    Article  Google Scholar 

  • Watt AS (1940) Contributions to the ecology of bracken (Pteridium aquilinum) I. The rhizome. New Phytol 39:401–422

    Article  Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological analyses. Springer-Verlag, NewYork, pp 1–391

    Book  Google Scholar 

  • Wood KA, O’Hare MT, McDonald C, Searle KR, Daunt F, Stillman RA (2017) Herbivore regulation of plant abundance in aquatic ecossistem. Biol Rev 92:1128–1141

    Article  PubMed  Google Scholar 

  • Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074

    Article  Google Scholar 

  • Wright EL, Black CR, Cheesman AW, Turner BL, Sjögersten S (2013) Impact of simulated changes in water table depth on ex situ decomposition of leaf litter from a neotropical peatland. Wetlands 33:217–226

    Article  Google Scholar 

  • Yule CM, Leong MY, Liew KC, Ratnarajah L, Schimidt K, Wong HM, Pearson RG, Boyero L (2009) Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. J N Am Benthol Soc 28:404–415

    Article  Google Scholar 

Download references

Funding

The first author received financial support and scholarship from the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) (Process 2012/13642-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H H L Saulino.

Additional information

Edited by Angelo Pallini – UFV

Electronic Supplementary Material

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite-Rossi, L.A., Saulino, H.H.L., Shimabukuro, E.M. et al. Shredder Chironomid Diets Are Influenced by Decomposition Rates of Different Leaf Litter Species. Neotrop Entomol 48, 38–49 (2019). https://doi.org/10.1007/s13744-018-0608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-018-0608-5

Keywords

Navigation