Skip to main content
Log in

Determination of the Genetic and Synergistic Suppression of a Methoxyfenozide-Resistant Strain of the House Fly Musca domestica L. (Diptera: Muscidae)

  • Pest Management
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

A Correction to this article was published on 03 May 2018

This article has been updated

Abstract

Musca domestica Linnaeus (house fly, Diptera: Muscidae) is a major veterinary and medical important pest all over the world. These flies have ability to develop resistance to insecticides. The present trial was performed to discover the inheritance mode (autosomal, dominance, number of genes involved) and preliminary mechanism of methoxyfenozide resistance in order to provide basic information necessary to develop resistance management strategy for this pest. A strain of M. domestica (MXY-SEL) was exposed to methoxyfenozide for 44 generations which developed a 5253.90-fold level of resistance to methoxyfenozide. The overlapping fiducial limits of LC50 values of the reciprocal crosses, F1 (MXY-SEL ♂ × Susceptible ♀) and F1 (MXY-SEL ♀ × Susceptible ♂), suggest that inheritance of methoxyfenozide resistance was an autosomal and likely completely dominant trait (DLC = 0.93 and 0.94 for F1 and F1, respectively). Backcrosses of the F1 with the parental MXY-SEL or Susceptible population predict a polygenic mode of inheritance. Piperonyl butoxide significantly altered the LC50 values, suggesting enhanced detoxification by cytochrome P450-dependent monooxygenases is a major mechanism of resistance to methoxyfenozide in the MXY-SEL strain. The estimated realized heritability was 0.07 for methoxyfenozide. These results would be helpful for the better management of M. domestica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 03 May 2018

    Due to an unfortunate turn of events, the surname of the last author appeared incorrectly in the original publication as the name should have read Binyameen.

References

  • Abbas N, Shad SA (2015) Assessment of resistance risk to lambda-cyhalothrin and cross-resistance to four other insecticides in the house fly, Musca domestica L. (Diptera: Muscidae). Parasitol Res 114:2629–2637

    Article  PubMed  Google Scholar 

  • Abbas N, Khan HAA, Shad SA (2014a) Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): a potential vector for disease transmission. Parasitol Res 113:1343–1352

    Article  PubMed  Google Scholar 

  • Abbas N, Khan HAA, Shad SA (2014b) Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicology 23:791–801

    Article  PubMed  CAS  Google Scholar 

  • Abbas N, Crickmore N, Shad SA (2015a) Efficacy of insecticide mixtures against a resistant strain of house fly (Diptera: Muscidae) collected from a poultry farm. Int J Trop Insect Sci 35:48–53

    Article  Google Scholar 

  • Abbas N, Shad SA, Ismail M (2015b) Resistance to conventional and new insecticides in house flies (Diptera: Muscidae) from poultry facilities in Punjab, Pakistan. J Econ Entomol 108:826–833

    Article  PubMed  Google Scholar 

  • Abbas N, Shad SA, Shah RM (2015c) Resistance status of Musca domestica L. populations to neonicotinoids and insect growth regulators in Pakistan poultry facilities. Pak J Zool 47:1663–1671

    CAS  Google Scholar 

  • Abbas N, Ijaz M, Shad SA, Binyameen M (2016a) Assessment of resistance risk to fipronil and cross resistance to other insecticides in the Musca domestica L. (Diptera: Muscidae). Vet Parasitol 223:71–76

    Article  PubMed  CAS  Google Scholar 

  • Abbas N, Shah RM, Shad SA, Azher F (2016b) Dominant fitness costs of resistance to fipronil in Musca domestica Linnaeus (Diptera: Muscidae). Vet Parasitol 226:78–82

    Article  PubMed  CAS  Google Scholar 

  • Afzal MBS, Ijaz M, Farooq Z, Shad SA, Abbas N (2015) Genetics and preliminary mechanism of chlorpyrifos resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae). Pestic Biochem Physiol 119:42–47

    Article  PubMed  CAS  Google Scholar 

  • Bielza P, Quinto V, Fernandez E, Gravalos C, Abellan J, Cifuentes D (2008) Inheritance of resistance to acrinathrin in Frankliniella occidentalis (Thysanoptera: Thripidae). Pest Manag Sci 64:584–588

    Article  PubMed  CAS  Google Scholar 

  • Bourguet D, Raymond M (1998) The molecular basis of dominance relationships: the case of some recent adaptive genes. J Evol Biol 11:103–122

    Article  Google Scholar 

  • Bouvier J, Charles BR, Boivin T, Boudinhon L, Beslay D, Sauphanor B (2001) Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and number of genes involved. Heredity 87:456–462

    Article  PubMed  CAS  Google Scholar 

  • Clavel A, Doiz O, Morales S, Varea M, Seral C, Castillo FJ, Fleta J, Rubio C, Gómez-Lus R (2002) House fly (Musca domestica) as a transport vector of Cryptosporidium parvum. Folia Parasitol 49:163–164

    Article  PubMed  Google Scholar 

  • Denholm I, Rowland M (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 37:91–112

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics. Longman, London

    Google Scholar 

  • Fasanella A, Scasciamacchia S, Garofolo G, Giangaspero A, Tarsitano E, Adone R (2010) Evaluation of the house fly Musca domestica as a mechanical vector for an anthrax. PLoS One 5:e12219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finney D (1971) A statistical treatment of the sigmoid response curve. Probit analysis, 3rd edn. Cambridge University Press, London, p 333

    Google Scholar 

  • Forster M, Klimpel S, Mehlhorn H, Sievert K, Messler S, Pfeffer K (2007) Pilot study on synanthropic flies (eg Musca, Sarcophaga, Calliphora, Fannia, Lucilia, Stomoxys) as vectors of pathogenic microorganisms. Parasitol Res 101:243–246

    Article  PubMed  Google Scholar 

  • IRAC (2016) IRAC mode of action classification (version 8.1).pp, 1-26.

  • Jia B, Liu Y, Zhu YC, Liu X, Gao C, Shen J (2009) Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Pest Manag Sci 65:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Khan H, Abbas N, Shad SA, Afzal MBS (2014a) Genetics and realized heritability of resistance to imidacloprid in a poultry population of house fly, Musca domestica L. (Diptera: Muscidae) from Pakistan. Pestic Biochem Physiol 114:38–43

    Article  PubMed  CAS  Google Scholar 

  • Khan HAA, Akram W, Shad SA (2014b) Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Trop 130:148–154

    Article  PubMed  CAS  Google Scholar 

  • Khan HAA, Akram W, Arshad M, Hafeez F (2016) Toxicity and resistance of field collected Musca domestica (Diptera: Muscidae) against insect growth regulator insecticides. Parasitol Res 115:1385–1390

    Article  PubMed  Google Scholar 

  • Kristensen M, Jespersen JB (2003) Larvicide resistance in Musca domestica (Diptera: Muscidae) populations in Denmark and establishment of resistant laboratory strains. J Econ Entomol 96:1300–1306

    Article  PubMed  CAS  Google Scholar 

  • Lande R (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99:541–553

    PubMed  PubMed Central  CAS  Google Scholar 

  • LeOra S (2003) Polo plus, a user’s guide to Probit or logic analysis. LeOra Software, Berkeley, CA

    Google Scholar 

  • Moon R, Hinton J, O’Rourke S, Schmidt D (2001) Nutritional value of fresh and composted poultry manure for house fly (Diptera: Muscidae) larvae. J Econ Entomol 94:1308–1317

    Article  PubMed  CAS  Google Scholar 

  • Mosallanejad H, Soin T, Smagghe G (2008) Selection for resistance to methoxyfenozide and 20-hydroxyecdysone in cells of the beet armyworm, Spodoptera exigua. Arch Insect Biochem Physiol 67:36–49

    Article  PubMed  CAS  Google Scholar 

  • Mota-Sanchez D, Wise JC, Poppen RV, Gut LJ, Hollingworth RM (2008) Resistance of codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Manag Sci 64:881–890

    Article  PubMed  CAS  Google Scholar 

  • Moulton JK, Pepper DA, Jansson RK, Dennehy TJ (2002) Pro-active management of beet armyworm (Lepidoptera: Noctuidae) resistance to tebufenozide and methoxyfenozide: baseline monitoring, risk assessment, and isolation of resistance. J Econ Entomol 95:414–424

    Article  PubMed  CAS  Google Scholar 

  • Otte J, Pfeiffer D, Tiensin T, Price L, Silbergeld E (2007) Highly pathogenic avian influenza risk, biosecurity and smallholder adversity. Livest Res Rural Dev 19:102

    Google Scholar 

  • Rehan A, Freed S (2014a) Resistance selection, mechanism and stability of Spodoptera litura (Lepidoptera: Noctuidae) to methoxyfenozide. Pestic Biochem Physiol 110:7–12

    Article  PubMed  CAS  Google Scholar 

  • Rehan A, Freed S (2014b) Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae). Crop Protect 56:10–15

    Article  CAS  Google Scholar 

  • Robertson JL, Savin N, Preisler HK, Russell RM (2007) Bioassays with arthropods. CRC press, Boca Raton, FL

    Google Scholar 

  • Sayyed AH, Omar D, Wright DJ (2004) Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella. Pest Manag Sci 60:827–832

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, Smagghe G, Pineda S, Vinuela E (2004) Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator. Biol Control 31:189–198

    Article  CAS  Google Scholar 

  • Scott JG (1990) Investigating mechanisms of insecticide resistance: methods, strategies, and pitfalls pesticide resistance in arthropods. Springer, p 39–57

  • Scott JG, Alefantis TG, Kaufman PE, Rutz DA (2000) Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manag Sci 56:147–153

    Article  CAS  Google Scholar 

  • Shah RM, Abbas N, Shad SA (2015a) Assessment of resistance risk in Musca domestica L. (Diptera: Muscidae) to methoxyfenozide. Acta Trop 149:32–37

    Article  PubMed  CAS  Google Scholar 

  • Shah RM, Abbas N, Shad SA, Sial AA (2015b) Selection, resistance risk assessment, and reversion toward susceptibility of pyriproxyfen in Musca domestica L. Parasitol Res 114:487–494

    Article  PubMed  Google Scholar 

  • Shah RM, Abbas N, Shad SA, Varloud M (2015c) Inheritance mode, cross-resistance and realized heritability of pyriproxyfen resistance in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Trop 142:149–155

    Article  PubMed  CAS  Google Scholar 

  • Shah RM, Shad SA, Abbas N (2015d) Mechanism, stability and fitness cost of resistance to pyriproxyfen in the house fly, Musca domestica L. (Diptera: Muscidae). Pestic Biochem Physiol 119:67–73

    Article  PubMed  CAS  Google Scholar 

  • Shah RM, Shad SA, Abbas N (2017) Methoxyfenozide resistance of the housefly, Musca domestica L. (Diptera: Muscidae): cross-resistance patterns, stability and associated fitness costs. Pest Manag Sci 73:254–261

    Article  PubMed  CAS  Google Scholar 

  • Shono T, Scott JG (2003) Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1. Pestic Biochem Physiol 75:1–7

    Article  CAS  Google Scholar 

  • Smagghe G, Pineda S, Carton B, Estal PD, Budia F, Viñuela E (2003) Toxicity and kinetics of methoxyfenozide in greenhouse-selected Spodoptera exigua (Lepidoptera: Noctuidae). Pest Manag Sci 59:1203–1209

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 3rd edn. WH Freeman, San Francisco

    Google Scholar 

  • Sun J, Liang P, Gao X (2012) Cross-resistance patterns and fitness in fufenozide-resistant diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 68:285–289

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE (1992) Resistance risk assessment: Realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 85:1551–1559

    Article  Google Scholar 

  • Tang JD, Caprio MA, Sheppard DC, Gaydon DM (2002) Genetics and fitness costs of cyromazine resistance in the house fly (Diptera: Muscidae). J Econ Entomol 95:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Taylor DB, Moon RD, Mark DR (2012) Economic impact of stable flies (Diptera: Muscidae) on dairy and beef cattle production. J Med Entomol 49:198–209

    Article  PubMed  Google Scholar 

  • Wang YH, Liu XG, Zhu YC, Wu SG, Li SY, Chen WM, Shen JL (2009) Inheritance mode and realized heritability of resistance to imidacloprid in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Pest Manag Sci 65:629–634

    Article  PubMed  CAS  Google Scholar 

  • Wang J-J, Wei D, Dou W, Hu F, Liu W-F, Wang J-J (2013) Toxicities and synergistic effects of several insecticides against the oriental fruit fly (Diptera: Tephritidae). J Econ Entomol 106:970–978

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Shi J, Gao X (2008) Inheritance of beta-cypermethrin resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag Sci 64:185–190

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to Prof. (Rtd.) Dr. Gerald Wilde and Prof. Dr. R. Jeff Whitworth, Kansas State University, USA, for the critical review of the manuscript to improve English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Abbas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Edited by Pedro Takao Yamamoto – ESALQ/USP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, R.M., Abbas, N., Shad, S.A. et al. Determination of the Genetic and Synergistic Suppression of a Methoxyfenozide-Resistant Strain of the House Fly Musca domestica L. (Diptera: Muscidae). Neotrop Entomol 47, 709–715 (2018). https://doi.org/10.1007/s13744-018-0604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-018-0604-9

Keywords

Navigation