Synthesis, characterization, in vitro biological and molecular docking evaluation of N,N'-(ethane-1,2-diyl)bis(benzamides)


The present research describes the synthesis, characterization, in vitro biological and docking evaluation of N,N'-(ethane-1,2-diyl)bis(benzamides) (3a-3j). Consequently, in in vitro hRBCs hemolysis assay, only the bis-amide (3d) induced 52.4% hemolysis at higher concentration (1000 μg/mL) that decreased drastically with concentration (250 μg/mL) to 27.9% (CC50 = 400.41). Similarly, the tested bis-amide (3j) was found to be the least toxic with 7.8% hemolysis at higher concentration (1000 μg/mL) that gradually decreases to 6.1% (CC50 = 19,347.83) at lower concentration (250 μg/mL). Accordingly, the tested bis-amides were found to be highly biocompatible against hRBCs at higher concentrations with much higher CC50 values (> 1000 μg/mL). The biocompatible bis-amides (3a-3j) were subjected to in vitro DNA ladder assay to analyze their apoptotic potential. The results obtained suggest the tested bis-amides (3a-3j) are highly degradative toward DNA causing the appearance of more than one bands or complete degradation of DNA except (3a), (3c), (3i) and (3 g). Moreover, the synthesized bis-amides (3a-3j) were tested in in vitro antileishmanial assay to unveil their leishmaniacidal potential. The results obtained clearly indicated that some of the tested bis-amides displayed good dose dependent response. The tested bis-amides were highly active at higher concentration (1000 μg/mL) against the leishmanial promastigotes and their % inhibitory potential decreased drastically with concentration (250 μg/mL). Consequently, at higher concentration (1000 μg/mL), the bis-amide (3f) caused 85% inhibition and was ranked as the most effective leishmaniacidal bis-amides followed by the bis-amide (3 g) with 73.54% inhibition of leishmanial promastigotes. However, in terms of their IC50 values, the best leishmaniacidal potential was displayed by the bis-amide (3f) followed by (3b), (3j) and (3 g) with IC50 values increasing in the order of 633.16, 680.22, 680.22 and 712.93 μg/mL, respectively. Molecular docking studies revealed that bis-amides having electron-donating groups showed good binding potential against antileishmanial target.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3


  1. 1.

    M. Iranshahi, P. Arfa, M. Ramezani, M.R. Jaafari, H. Sadeghian, C. Bassarello, S. Piacente, C. Pizza, Phytochem. 68(4), 554–561 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    S. Kapil, P.K. Singh, O. Silakari, Eur. J. Med. Chem. 157, 339–367 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    N.A.D. Atan, M. Koushki, N.A. Ahmadi, M. Rezaei-Tavirani, Alexandria. J. Med. 54(4), 383–390 (2018)

    Google Scholar 

  4. 4.

    S.W. Khan, J.H. Zaidi, N. Nasser, E. El-Sayed, K.M. Khan, S. Yousuf, M. Khan, A. Nadhman, M.N. Umar, S. Perveen, G.A. Miana, J. Chem. Soc. Pak. 38, (2016).

  5. 5.

    G.S. Mani, S.P. Shaik, Y. Tangella, S. Bale, C. Godugu, A. Kamal, Org. Biomol. Chem. 15(32), 6780–6791 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    A. Maleki, V. Eskandarpour, J. Iranian Chem. Soc. 16(7), 1459–1472 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    A. Maleki, H. Movahed, Ravaghi. Carbohydr. Polym. 156, 259–267 (2017)

    CAS  Article  Google Scholar 

  8. 8.

    E. Valeur, M. Bradley, Chem. Soc. Rev. 38(2), 606–631 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    A. Shaabani, A. Maleki, F. Hajishaabanha, H. Mofakham, M. Seyyedhamzeh, M. Mahyari, S.W. Ng, J. Comb. Chem. 12(1), 186–190 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    J.S. Carey, D. Laffan, C. Thomson, M.T. Williams, Org. Biomol. Chem. 4(12), 2337–2347 (2006)

    CAS  Article  Google Scholar 

  11. 11.

    S.H. Pattanashetty, K.M. Hosamani, A.K. Shettar, S.R. Mohammed, J. Heterocycl. Chem. 55(7), 1765–1774 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    A. Maleki, A.A. Jafari, S. Yousefi, J. Iranian Chem. Soc. 14(8), 1801–1813 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    S. Léger, C.I. Bayly, W.C. Black, S. Desmarais, J.P. Falgueyret, F. Massé, J.F. Truchon, Bioorg. Med. Chem. Lett. 17(15), 4328–4332 (2007)

    Article  Google Scholar 

  14. 14.

    C.K. Wada, R.R. Frey, Z. Ji, M.L. Curtin, R.B. Garland, J.H. Holms, P.A. Marcotte, Bioorg. Med. Chem. Lett. 13(19), 3331–3335 (2003)

    CAS  Article  Google Scholar 

  15. 15.

    G.G. Berest, O.Y. Voskoboynik, S.I. Kovalenko, O.M. Antypenko, I.S. Nosulenko, A.M. Katsev, O.S. Shandrovskaya, Eur. J. Med. Chem. 46(12), 6066–6074 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    K.A. Shaaban, M.D. Shepherd, T.A. Ahmed, S.E. Nybo, M. Leggas, J. Rohr, J. Antibiotics. 65(12), 615 (2012)

    CAS  Article  Google Scholar 

  17. 17.

    G. Caliendo, V. Santagada, E. Perissutti, B. Severino, F. Fiorino, T.D. Warner, G. de Nucci, Eur. J. Med. Chem. 36(6), 517–530 (2001)

    CAS  Article  Google Scholar 

  18. 18.

    A. Kaur, D.P. Pathak, V. Sharma, S. Wakode, Arch. Pharm. 351(6), 1800008 (2018)

    Article  Google Scholar 

  19. 19.

    M.A. Ahmaditaba, S. Shahosseini, B. Daraei, A. Zarghi, M.H.H. Tehrani, Arch. Pharm. 350(10), 1700158 (2017)

    Article  Google Scholar 

  20. 20.

    S.H. Pattanashetty, K.M. Hosamani, A.K. Shettar, R.M. Shafeeullah, J. Heterocyc. Chem. 55(7), 1765–1774 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    J.P. Ley, H.J. Bertram, Tetrahedron 57(7), 1277–1282 (2001)

    CAS  Article  Google Scholar 

  22. 22.

    M. Videnović, M. Mojsin, M. Stevanović, I. Opsenica, T. Srdić-Rajić, B. Šolaja, Eur. J. Med. Chem. 157, 1096–1114 (2018)

    Article  Google Scholar 

  23. 23.

    H.S. Bodiwala, G. Singh, R. Singh, C.S. Dey, S.S. Sharma, K.K. Bhutani, I.P. Singh, J. Nat. Med. 61(4), 418–421 (2007)

    CAS  Article  Google Scholar 

  24. 24.

    S.N. Suryawanshi, A. Tiwari, N. Chandra, S. Gupta, Bioorg. Med. Chem. Lett. 22(21), 6559–6562 (2012)

    CAS  Article  Google Scholar 

  25. 25.

    M.V. Papadopoulou, W.D. Bloomer, H.S. Rosenzweig, E. Chatelain, M. Kaiser, S.R. Wilkinson, C. McKenzie, J.R. Ioset, J. Med. Chem. 55(11), 5554–5565 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    V. da Silva Carrara, E.F. Cunha-Júnior, E.C. Torres-Santos, A.G. Corrêa, J.L. Monteiro, I.G. Demarchi, M.V.C. Lonardoni, D.A.G. Cortez, Rev. Bras. Farmacog. 23(3), 447–454 (2013)

    Article  Google Scholar 

  27. 27.

    H. Aziz, A. Saeed, F. Jabeen, J. Simpson, A. Munawar, M. Qasim, J. Mol. Structure. 1156, 627–631 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    J. Sambrook, D.W. Russell, Molecular Cloning: A Laboratory Manual, 3rd edn. (Cold Springs Harbor Laboratory, New York, 2001).

    Google Scholar 

  29. 29.

    Molecular Operating Environment (MOE), 2016.08; Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2016.

  30. 30.

    E. Schlagenhauf, R. Etges, P. Metcalf, Structure. 6(8), 1035–1046 (1998)

    CAS  Article  Google Scholar 

  31. 31.

    R. Shukla, A. Saeed, J. Simpson, D. Chopra, Cryst. Eng. Comm. 19(36), 5473–5491 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    R.M. Lanigan, P. Starkov, T.D. Sheppard, J. Org. Chem. 78(9), 4512–4523 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    A. Leggio, J. Bagalà, E.L. Belsito, A. Comandè, M. Greco, A. Liguori, Chem. Cent. J. 11(1), 87 (2017)

    Article  Google Scholar 

  34. 34.

    M. Maleki, Baghayeri. RSC Adv. 5(97), 79746–79758 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    M. Sechi, U. Azzena, M.P. Delussu, R. Dallocchio, A. Dessì, A. Cosseddu, N. Pala, N. Neamati, Molecules 13(10), 2442–2461 (2008)

    CAS  Article  Google Scholar 

  36. 36.

    M. Tajbakhsh, R. Hosseinzadeh, H. Alinezhad, P. Rezaee, Syn. Comm. 43(17), 2370–2379 (2013)

    CAS  Article  Google Scholar 

  37. 37.

    R. Akbarzadeh, P. Mirzaei, A. Bazgir, J. Organomet. Chem. 695(21), 2320–2324 (2010)

    CAS  Article  Google Scholar 

  38. 38.

    S. Mehwish, H. Khan, A.U. Rehman, A.U. Khan, M.A. Khan, O. Hayat, M. Ahmad, A. Wadood, N. Ullah, Biotech. 9(8), 303–316 (2019)

    Google Scholar 

Download references


The author Mr. Hamid Aziz gratefully acknowledges an Indigenous scholarship from Higher Education Commission of Pakistan as a financial support for the research work performed.

Author information



Corresponding author

Correspondence to Hamid Aziz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary file 1 (DOCX 280 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aziz, H., Saeed, A., Jabeen, F. et al. Synthesis, characterization, in vitro biological and molecular docking evaluation of N,N'-(ethane-1,2-diyl)bis(benzamides). J IRAN CHEM SOC (2021).

Download citation


  • Agarose gel electrophoresis
  • Apoptosis
  • Biocompatibility
  • Bis-amides
  • DNA
  • Leishmania tropica
  • Promastigotes
  • Human red blood cells