Theoretical and experimental approaches of new Schiff bases: efficient synthesis, X-ray structures, DFT, molecular modeling and ADMET studies


Two new Schiff bases (E)-1-(3-((2-hydroxy-3-methylbenzylidene)amino)phenyl)ethan-1-one (1) and (E)-2-(((3-chloro-4-(4-chlorophenoxy)phenyl)imino)methyl)-6-methylphenol (2) were synthesized by already reported method on reflux. Characterization of targeted compounds was performed by spectroscopic techniques and X-ray diffraction analysis. Single-crystal X-ray diffraction studies showed that compound 1 is orthorhombic, while 2 is triclinic. In the crystalline molecules, intermolecular interactions have been observed by using the Hirshfeld surface analysis along 2D interactions. Molecular Operating Environment software was used for the docking studies which administer the potential appliance of the targeted compounds against AChE and BChE. Results of the docking study depicted that compound 1 is less active than that of compound 2 across both enzymes. To perform the optimization of the Schiff base, 6-31G(d,p) basis set and B3LYP method were used. DFT calculations were used to measure the associated energies of the orbitals and also correlate the bond angle and bong length of the synthesized compounds with the experimental values. It was seen from results that experimental and DFT calculation are in close agreement. In order to check the therapeutic properties, in silico ADMET model was adopted which revealed that the different properties of the synthesized molecules are drug-like.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29


  1. 1.

    K. Nicolaou, Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc. R. Soc. A Math. Phys. Eng. Sci. 470(2163), 20130690 (2014)

    CAS  Google Scholar 

  2. 2.

    F. Nicotra, Synthetic organic chemistry. Org. Biomol. Chem. 1, 1–9

  3. 3.

    A.M. Abu-Dief, I.M. Mohamed, A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J. Basic Appl. Sci. 4(2), 119–133 (2015)

    Article  Google Scholar 

  4. 4.

    S.T. Tsantis, D.I. Tzimopoulos, M. Holynska, S.P. Perlepes, Oligonuclear actinoid complexes with Schiff bases as ligands—older achievements and recent progress. Int. J. Mol. Sci. 21(2), 555 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    I. Ledeţi, A. Alexa, V. Bercean, G. Vlase, T. Vlase, L.-M. Şuta, A. Fuliaş, Synthesis and degradation of Schiff bases containing heterocyclic pharmacophore. Int. J. Mol. Sci. 16(1), 1711–1727 (2015)

    Article  Google Scholar 

  6. 6.

    K. Abhishek, J. Fernandes, K. Pankaj, Synthesis, antimicrobial and antiinflammatory studies of some novel schiff base derivatives. Int. J. Drug Dev. Res. 6, 165–167 (2014)

    CAS  Google Scholar 

  7. 7.

    P. Piotr, H. Adam, P. Krystian, B. Bogumil, B. Franz, Biological properties of Schiff bases and Azo derivatives of phenols. Curr. Org. Chem. 13(2), 124–148 (2009)

    Article  Google Scholar 

  8. 8.

    V. Sumangala, B. Poojary, N. Chidananda, T. Arulmoli, S. Shenoy, Synthesis and biological evaluation of some Schiff bases of 4-amino-5-(4-methylsulfonyl) benzyl-2, 4-dihydro-3H-[1, 2, 4]-triazole-3-thione. Med. Chem. Res. 22(6), 2921–2928 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    H. Sachdeva, D. Dwivedi, K. Arya, S. Khaturia, R. Saroj, Synthesis, anti-inflammatory activity, and QSAR study of some Schiff bases derived from 5-mercapto-3-(4′-pyridyl)-4H-1, 2, 4-triazol-4-yl-thiosemicarbazide. Med. Chem. Res. 22(10), 4953–4963 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    X. Sun, Y. Bai, Y. Liu, B. Chen, Synthesis, structure and biological activities of 3-substituted phenoxymethyl-4-amino-1, 2, 4-triazol-5-thione Schiff bases. Acta Chim. Sin 68, 788–792 (2010)

    CAS  Google Scholar 

  11. 11.

    A. Kajal, S. Bala, S. Kamboj, N. Sharma, V. Saini, Schiff bases: a versatile pharmacophore. J. Catal. 2013, 1–14 (2013)

    Article  Google Scholar 

  12. 12.

    C. Adamo, D. Jacquemin, The calculations of excited-state properties with time-dependent density functional theory. Chem. Soc. Rev. 42(3), 845–856 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    J. Neugebauer, T. Hickel, Density functional theory in materials science. Wiley Interdiscipl. Rev. Comput. Mol. Sci. 3(5), 438–448 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    P.J. Hasnip, K. Refson, M.I. Probert, J.R. Yates, S.J. Clark, C.J. Pickard, Density functional theory in the solid state. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372(2011), 20130270 (2014)

    Article  Google Scholar 

  15. 15.

    S.H. Sumrra, I. Sahrish, M.A. Raza, Z. Ahmad, M.N. Zafar, Z.H. Chohan, M. Khalid, S. Ahmed, Efficient synthesis, characterization, and in vitro bactericidal studies of unsymmetrically substituted triazole-derived Schiff base ligand and its transition metal complexes. Monatshefte für Chemie-Chem. Mon. 151, 549–557 (2020)

    CAS  Article  Google Scholar 

  16. 16.

    G.M. Sheldrick, SHELXT–Integrated space-group and crystal-structure determination. Acta Crystall. Sect. A Found. Adv. 71(1), 3–8 (2015)

    Article  Google Scholar 

  17. 17.

    G.M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystall. Sect. C Struct. Chem. 71(1), 3–8 (2015)

    Article  Google Scholar 

  18. 18.

    L.J. Farrugia, WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 45(4), 849–854 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    C. Stoe, X-AREA, Version 1.30, Program for the Acquisition and Analysis of Data (Stoe and Cie GmbH, Darmatadt, 2005).

    Google Scholar 

  20. 20.

    C. Stoe, X-RED, Data Reduction Program (STOE and Cie GmbH, Darmstadt, 1999).

    Google Scholar 

  21. 21.

    A.L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 65(2), 148–155 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. Streek, Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 39(3), 453–457 (2006)

    CAS  Article  Google Scholar 

  23. 23.

    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09; Gaussian, Inc, Wallingford, CT 32, pp. 5648–5652, (2009)

  24. 24.

    A.D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96(3), 2155–2160 (1992)

    CAS  Article  Google Scholar 

  25. 25.

    C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)

    CAS  Article  Google Scholar 

  26. 26.

    P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta 28(3), 213–222 (1973)

    CAS  Article  Google Scholar 

  27. 27.

    S. Wolff, D. Grimwood, J. McKinnon, M. Turner, D. Jayatilaka, M. Spackman, Crystal Explorer package, ver. 3.1, University of Western Australia, Perth, Australia (2013)

  28. 28.

    K. Azouzi, B. Hamdi, R. Zouari, A.B. Salah, Synthesis, structure and Hirshfeld surface analysis, vibrational and DFT investigation of (4-pyridine carboxylic acid) tetrachlorocuprate (II) monohydrate. Bull. Mater. Sci. 40(2), 289–299 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    M.A. Raza, K. Fatima, Z. Saqib, J.K. Maurin, A. Budzianowski, Designing of diamino based esterases inhibitors; synthesis, characterization, density functional theory and molecular modeling. J. Mol. Struct. 1195, 712–722 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    P.D. Lyne, Structure-based virtual screening: an overview. Drug Discov. Today 7(20), 1047–1055 (2002)

    CAS  Article  Google Scholar 

  31. 31.

    H.Y. Zhang, Y.M. Sun, X.L. Wang, Substituent effects on OH bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants. Chem. A Eur. J. 9(2), 502–508 (2003)

    CAS  Article  Google Scholar 

  32. 32.

    M.A. Raza, K. Fatima, Molecular modeling approach for designing of amino-derived anti-Alzheimer agents: a computational study. J. Phys. Org. Chem. 33, e4076 (2020)

    CAS  Article  Google Scholar 

  33. 33.

    Z.H. Chohan, M. Hanif, Design, synthesis, and biological properties of triazole derived compounds and their transition metal complexes. J. Enzyme Inhib. Med. Chem. 25(5), 737–749 (2010)

    CAS  Article  Google Scholar 

  34. 34.

    E. Tozzo, S. Romera, M.P. dos Santos, M. Muraro, H.D.A. Regina, L. Liao, L. Vizotto, E.R. Dockal, Synthesis, spectral studies and X-ray crystal structure of N, N′-(±)-trans-1, 2-cyclohexylenebis (3-ethoxysalicylideneamine) H2 (t-3-EtOsalchxn). J. Mol. Struct. 876(1–3), 110–120 (2008)

    CAS  Article  Google Scholar 

  35. 35.

    A. Bartyzel, Synthesis, thermal study and some properties of N 2 O 4—donor Schiff base and its Mn (III), Co (II), Ni (II), Cu (II) and Zn (II) complexes. J. Therm. Anal. Calorim. 127(3), 2133–2147 (2017)

    CAS  Article  Google Scholar 

  36. 36.

    T. Hökelek, S. Özkaya, H. Necefoğlu, Crystal structure and hirshfeld surface analysis of AquaBis (Nicotinamide-Κn 1) Bis (2, 4, 6-TriMethylBenzoato-Κ2 O, O′) Cadmium (II). Acta Crystallogr. E Cryst. Commun. 74, 246–251 (2018)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Muhammad Asam Raza.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dege, N., Raza, M.A., Doğan, O.E. et al. Theoretical and experimental approaches of new Schiff bases: efficient synthesis, X-ray structures, DFT, molecular modeling and ADMET studies. J IRAN CHEM SOC (2021).

Download citation


  • Crystal structure
  • Density functional theory
  • Molecular modeling
  • Schiff base