Novel donor–acceptor non-fullerene metal–organic solar cells based on open edge Sc@BN: a DFT and TD-DFT study

Abstract

The organic solar cells (OSCs) have been increasingly attractive due to their environmental issues, flexibility, economic advantages, designing and productions. First generation of these systems was commonly based on the fullerene structures. In this work, four donor–acceptor (D–A) systems using Sc-doped BN layer as the non-fullerene acceptor and alpha-sexithiophene as donor were investigated, and the efficiency of OSCs was assessed by application of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculation methods. The results show that the systems were the superior by the highest and longest charge transfer from donor (D) to acceptor (A). According to the obtained results, two systems could just be applied as OSCs, which the highest anticipated voltage was 2.3 eV in them. Furthermore, the effective absorption range was about 100 nm in photoinduced electron transfer (PET) or charge transfer process at the end of ultraviolet (UV) region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res. 42, 1809 (2009)

    CAS  Article  Google Scholar 

  2. 2.

    C. Liu, M. Gaob, Z. Wu, Mol. Phys. 112, 199 (2014)

    CAS  Article  Google Scholar 

  3. 3.

    G. Yu, A.J. Heeger, J. Appl. Phys. 78, 4510 (1995)

    CAS  Article  Google Scholar 

  4. 4.

    O. Amiri, M. Salavati-Niasari, M. Farangi, Electrochim. Acta 153, 90 (2015)

    CAS  Article  Google Scholar 

  5. 5.

    F. Ansari, E. Shirzadi, M. Salavati-Niasari, T. LaGrange, K. Nonomura, J.-H. Yum, K. Sivula, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, P.J. Dyson, A. Hagfeldt, J. Am. Chem. Soc. 142, 11428 (2020)

    Article  Google Scholar 

  6. 6.

    N. Mir, M. Salavati-Niasari, Mater. Res. Bull. 48, 1660 (2013)

    CAS  Article  Google Scholar 

  7. 7.

    O. Amiri, M. Salavati-Niasari, M. Sabet, D. Ghanbari, Mater. Sci. Semicond. Process. 16, 1485 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    N. Mir, M. Salavati-Niasari, Sol. Energy 86, 3397 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    M. Panahi-Kalamuei, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, J. Alloys Compd. 617, 627 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    A. McEvoy, L. Castaner, T. Markvart, Solar Cells: Materials, Manufacture and Operation (Academic Press, Cambridge, 2012).

    Google Scholar 

  11. 11.

    P. Choubey, A. Oudhia, R. Dewangan, Recent Res. Sci. Technol. 4 (2012)

  12. 12.

    A.L. Gibb, N. Alem, J.-H. Chen, K.J. Erickson, J. Ciston, A. Gautam, M. Linck, A. Zettl, J. Am. Chem. Soc. 135, 6758 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    R.A. Marcus, Angew. Chem. Int. Ed. Engl. 32, 1111 (1993)

    Article  Google Scholar 

  14. 14.

    Y. Li, T. Pullerits, M. Zhao, M. Sun, J. Phys. Chem. C 115, 21865 (2011)

    CAS  Article  Google Scholar 

  15. 15.

    V. Lemaur, M. Steel, D. Beljonne, J.L. Brédas, J. Cornil, J. Am. Chem. Soc. 127, 6077 (2005)

    CAS  Article  Google Scholar 

  16. 16.

    P. Song, Q. Zhou, Y. Li, F. Ma, M. Sun, Phys. Chem. Chem. Phys. 19, 16105 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    S. Tretiak, S. Mukamel, Chem. Rev. 102, 3171 (2002)

    CAS  Article  Google Scholar 

  18. 18.

    V. Gupta, A.K.K. Kyaw, D.H. Wang, S. Chand, G.C. Bazan, A.J. Heeger, Sci. Rep. 3, 1965 (2013)

    Article  Google Scholar 

  19. 19.

    A.A. Taherpour, Z. Shahri, O. Rezaei, M. Jamshidi, T. Fellowes, Chem. Phys. Lett. 691, 231 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    A.A. Taherpour, O. Rezaei, Z. Shahri, J. Jalilian, M. Jamshidi, N. Zolfaghar, J. Iran. Chem. Soc. 12, 1983 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    J. Jalilian, H. Zahrabi, J. Jalilian, F. Soofivand, S. Farshadfar, S. Naderizadeh, N. Rahimi, Comput. Theor. Chem. 979, 10 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    A.R. Belverdi, M. Jamshidi, A. Taherpour, M. Jamshidi, O. Rezaei, Phys. B Condens. Matter 542, 37 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    F. Jahantigh, S.B. Ghorashi, A.R. Belverdi, Phys. B Condens. Matter 542, 32 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    A.A. Taherpour, M. Jamshidi, O. Rezaei, J. Mol. Graph. Modell. 75, 42 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    A.A. Taherpour, J. Phys. Chem. C 113, 5402 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2012)

    Article  Google Scholar 

  27. 27.

    M. J. Frisch. G. W. Trucks. H. B. Schlegel. G. E. Scuseria. M. A. Robb. J. R. Cheeseman. G. Scalmani. V. Barone. B. Mennucci, G. e. Petersson, (2014).

  28. 28.

    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    CAS  Article  Google Scholar 

  29. 29.

    N.M. O’boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839 (2008)

    Article  Google Scholar 

  30. 30.

    A.A. Taherpour, M. Jamshidi, O. Rezaei, A.R. Belverdi, J. Mol. Struct. 1161, 339 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    T. Moorsom, M. Wheeler, T.M. Khan, F. Al Ma’Mari, C. Kinane, S. Langridge, A. Bedoya-Pinto, L. Hueso, G. Teobaldi, V.K. Lazarov, Phys. Rev. B 90, 125311 (2014)

    Article  Google Scholar 

  32. 32.

    M. Shamsipur, A. Barati, A.A. Taherpour, M. Jamshidi, J. Phys. Chem. Lett. 9, 4189 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    W.G. Brown, J. Chem. Educ. 17, 551 (1940)

    Article  Google Scholar 

  34. 34.

    M.Z. Bazant, Acc. Chem. Res. 46, 1144 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    I. Loeff, J. Rabani, A. Treinin, H. Linschitz, J. Am. Chem. Soc. 115, 8933 (1993)

    CAS  Article  Google Scholar 

  36. 36.

    V. Vehmanen, N.V. Tkachenko, H. Imahori, S. Fukuzumi, H. Lemmetyinen, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57, 2229 (2001)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors have acknowledged the Theoretical and Computational Research Center of Chemistry Faculty of the Razi University of Kermanshah-Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Avat Arman Taherpour.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Namivandi, M.N., Taherpour, A.A., Ghadermazi, M. et al. Novel donor–acceptor non-fullerene metal–organic solar cells based on open edge Sc@BN: a DFT and TD-DFT study. J IRAN CHEM SOC (2021). https://doi.org/10.1007/s13738-021-02188-x

Download citation

Keywords

  • Electron donor–acceptors
  • Organic solar cells design
  • BN layer
  • Sc-doped BN layer
  • TD-DFT
  • Molecular modeling