Low-cost Zeolite/TiO2 composite for the photocatalytically enhanced adsorption of Cd2+ from aqueous solution

Abstract

Nano-TiO2 (anatase) powders were immobilized on crystalline zeolite (size = 45 µm). The composite material was used for the rapid and efficient adsorption of the Cd2+ ions from an aqueous solution. Furthermore, the composites were exposed to two different calcination temperatures (500 and 700 °C) and were characterized by employing XRD, UV–Vis DRS, EDX, XRF, and pH point of zero charge analyses. Green synthesis, impregnation method was used to obtain zeolite-supported TiO2. The present study demonstrated that the photocatalytic maximum adsorption capacity of Cd2+ by zeolite-supported TiO2 (qm = 59.3 mg/g) was 3.7 times higher than that of bare TiO2 (qm = 16.2 mg/g). The percent removal efficiency of 99.6% was observed using zeolite-supported TiO2 composite under compact fluorescent light. Adsorption and kinetics studies were performed and the results obtained best fitted Langmuir adsorption isotherm and pseudo-second-order kinetics. As the wastewater containing different ionic strength, model dye Methylene Blue (MB) was used as competitive ions in the adsorption process. MB acted as photo-generated positive hole (h+) trapper and enhanced the Cd2+ removal efficiency (qm = 68.8 mg/g) further by reducing electron/hole pairs recombination rate. The easily separable composite showed high reusability by physical (high-temperature combustion) regeneration as compared to chemical (Fenton oxidation) regenerated samples.

This is a preview of subscription content, access via your institution.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    S. Mahdavi, Clean Technol. Environ. Policy 18, 817–827 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    S. Ashraf, Q. Ali, Z.A. Zahir, S. Ashraf, H.N. Asghar, Ecotoxicol. Environ. Safety 174, 714 (2019)

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    U.S. EPA, Exposure Factors Handbook 2011 Edition (Final) (U.S Environmental Protection Agency, Washington, DC, 2011)

  4. 4.

    M. Trgo, J. Perić, N.V. Medvidović, J. Hazard. Mater. 136, 938 (2006)

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    M. Mohsen-Nia, P. Montazeri, H. Modarress, Desalination 217, 276 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    P. Pengthamkeerati, T. Satapanajaru, P. Chularuengoaksorn, Fuel 87, 2469 (2008)

    CAS  Article  Google Scholar 

  7. 7.

    A.D. Delil, O. Gülçiçek, N. Gören, Int. J. Environ. Res. 13, 861 (2019)

    Article  CAS  Google Scholar 

  8. 8.

    I. Kula, M. Uğurlu, H. Karaoğlu, A. Celik, Bioresour. Technol. 99, 492 (2008)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, Water Res. 33, 2469 (1999)

    CAS  Article  Google Scholar 

  10. 10.

    M.R. Abukhadra, M. Shaban, F. Sayed, I. Saad, Environ. Sci. Pollut. Res 25, 33264 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    XXu.X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Environ. Sci. Pollut. Res 20, 358 (2013)

    Article  CAS  Google Scholar 

  12. 12.

    L. Foo, C. Tee, N. Raimy, D. Hassell, L. Lee, Clean Technol. Environ. Policy 14, 273 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    M.R. Abukhadra, B.M. Bakry, A. Adlii, S.M. Yakout, M.E. El-Zaidy, J. Hazard. Mater. 374, 296 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    M. Visa, A. Duta, Chem. Eng. J. 223, 860 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    M. Abdel Salam, M.R. Abukhadra, A. Adlii, ACS omega 5, 2766 (2020)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    N.U. Saqib, R. Adnan, I. Shah, Mater. Res. Exp. 6, 095506 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    G. Kravchenko, E. Domoroshchina, G. Kuzmicheva, A. Gaynanova, S. Amarantov, L. Pirutko, A. Tsybinsky, N. Sadovskaya, E. Kopylova, Nanotechnol. Russia 11, 579 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    X. Guo, S. Zhang, X.-Q. Shan, J. Hazard. Mater. 151, 134 (2008)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008)

    CAS  Article  Google Scholar 

  20. 20.

    V.N.H. Nguyen, R. Amal, D. Beydoun, Chem. Eng. Sci. 58, 4429 (2003)

    CAS  Article  Google Scholar 

  21. 21.

    N.U. Saqib, A. Khan, I. Alam, M. Rahim, SN Appl. Sci. 2, 619 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Ind. Eng. Chem. Res. 46, 369 (2007)

    CAS  Article  Google Scholar 

  23. 23.

    L. Zhao, T. Cui, Y. Li, B. Wang, J. Han, L. Han, Z. Liu, RSC Adv. 5, 64495 (2015)

    CAS  Article  Google Scholar 

  24. 24.

    G. Liu, D. Zhu, S. Liao, L. Ren, J. Cui, W. Zhou, J. Hazard. Mater. 172, 1424 (2009)

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    S. Izadyar, S. Fatemi, Ind. Eng. Chem. Res. 52, 10961 (2013)

    CAS  Article  Google Scholar 

  26. 26.

    M. Kumar, A.K. Gupta, D. Kumar, Ceram. Int. 42, 405 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    S. Wang, H. Li, S. Xie, S. Liu, L. Xu, Chemosphere 65, 82 (2006)

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    W. Zhang, X. Xiao, L. Zheng, C. Wan, Appl. Surf. Sci. 358, 468 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003)

    CAS  Article  Google Scholar 

  30. 30.

    S. Saha, J. Wang, A. Pal, Sep. Purif. Technol. 89, 147 (2012)

    CAS  Article  Google Scholar 

  31. 31.

    E.M. Hotze, T. Phenrat, G.V. Lowry, J. Environ. Qual. 39, 1909 (2010)

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    M. Samarghandi, J. Nouri, A. Mesdaghinia, A. Mahvi, S. Nasseri, F. Vaezi, Int. J. Environ. Sci. Technol. 4, 19 (2007)

    CAS  Article  Google Scholar 

  33. 33.

    W. Janusz, M. Matysek, J. Colloid Interface Sci. 296, 22 (2006)

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    L. Skubal, N. Meshkov, T. Rajh, M. Thurnauer, J. Photochem. Photobiol. A Chem. 148, 393 (2002)

    CAS  Article  Google Scholar 

  35. 35.

    M. Zulfiqar, S. Sufian, N.E. Rabat, N. Mansor, J. Mol. Liquids 308, 112941 (2020)

    CAS  Article  Google Scholar 

  36. 36.

    W. Cheung, Y. Szeto, G. McKay, Bioresour. Technol. 98, 2897 (2007)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    S. Sharaf El-Deen, F.-S. Zhang, J. Exp. Nanosci. 11, 239 (2016)

    CAS  Article  Google Scholar 

  38. 38.

    R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem. A 2, 13932 (2014)

    CAS  Article  Google Scholar 

  39. 39.

    I. Shah, R. Adnan, W.S.W. Ngah, N. Mohamed, Y.H. Taufiq-Yap, Bioresour. Technol. 160, 52 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    M. Islam, R. Patel, J. Hazard. Mater. 143, 303 (2007)

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    K.E. Engates, H.J. Shipley, Environ. Sci. Pollut. Res. 18, 386 (2011)

    CAS  Article  Google Scholar 

  42. 42.

    E. Unuabonah, K. Adebowale, B. Olu-Owolabi, L. Yang, L. Kong, Hydrometallurgy 93, 1 (2008)

    CAS  Article  Google Scholar 

  43. 43.

    Y.-C. Lee, J.-W. Yang, J. Ind. Eng. Chem. 18, 1178 (2012)

    CAS  Article  Google Scholar 

  44. 44.

    E. Giarratano, M. Faleschini, C. Bruni, N.L. Olivera, M.N. Gil, Int. J. Environ. Res. 13, 581 (2019)

    CAS  Article  Google Scholar 

  45. 45.

    J.H. Roque-Ruiz, E.A. Cabrera-Ontiveros, J. Torres-Pérez, S.Y. Reyes-López, Water Air Soil Pollut. 227, 286 (2016)

    Article  CAS  Google Scholar 

  46. 46.

    A. Usman, A. Sallam, M. Zhang, M. Vithanage, M. Ahmad, A. Al-Farraj, Y.S. Ok, A. Abduljabbar, M. Al-Wabel, Water Air Soil Pollut. 227, 449 (2016)

    Article  CAS  Google Scholar 

  47. 47.

    S. Hashimoto, J. Photochem. Photobiol. C 4, 19 (2003)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the grant RUI No. 1001/PKIMIA/815099 for the equipment and financial funding by Universiti Sains Malaysia (USM). Furthermore, N. S. is also grateful to TWAS (The World Academy of Sciences) & USM for granting TWAS–USM Fellowship to tail this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Najm Us Saqib.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saqib, N.U., Adnan, R., Rahim, M. et al. Low-cost Zeolite/TiO2 composite for the photocatalytically enhanced adsorption of Cd2+ from aqueous solution. J IRAN CHEM SOC (2021). https://doi.org/10.1007/s13738-021-02179-y

Download citation

Keywords

  • Zeolite
  • Titanium dioxide
  • Immobilization
  • Cd2+ adsorption
  • Regeneration