Spectrophotometric and spectrofluorimetric determinations of lomefloxacin lanthanum complex in tablets using multivariate modeling and optimization stratagem


Introduction of novel statistical technique for computing the interaction of lomefloxacin (LOME) and lanthanum (Ln) was the main purpose of this research. Moreover, using lanthanum as example of lanthanides for such interaction had not been exploited before. Screening of four factors affecting the interaction as metal volume, pH, temperature and reaction time was executed applying Plackett–Burman design where Pareto plots and ANOVA testing were used to pool off the insignificant factor. Accordingly, the imperative factors were optimized using Box–Behnken design after fine-tuning of the upper and lower levels values. 3-D surface plots and 2-D contour plots were chosen to evaluate the interaction between factors, followed by optimization plots to obtain the best blend of factors harmonized together and model confirmation was verified with three target points. Responses were measured as maximum absorbance; Y1 for technique (A) and maximum fluorescence intensity; Y2 for technique (B) using the resulted optimal conditions. Determination of LOME was applied with successful wide working range of (0.900–15.520, 0.070–1.552 µg/mL) for Y1 and Y2, respectively, with LOD and LOQ figured as 0.252, 0.763 µg/mL for Y1 and 0.0177, 0.0536 µg/mL for Y2. High degree of accuracy and precision was maintained in both pure and dosage forms findings. The techniques were found to be robust and adequate. Selectively of the models were proven by satisfactory % recovery calculations in interference tests.

Graphic abstract

Statistical screening and optimization of the factors affecting the absorbance and fluorescence intensities of complexation of Lomefloxacin with lanthanum were achieved, followed by model confirmation and determinations in pure and dosage forms of the drug.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.



One factor at a time


Placket–Burman design


Box–Behnken Design


Double distilled water


Analysis of variance


Standard deviation


Relative standard deviation


Confidence interval


  1. 1.

    Y. Lu, B. Chen, M. Yu, J. Han, Y. Wang, Z. Tan, Y. Yan, Simultaneous separation/enrichment and detection of trace ciprofloxacin and lomefloxacin in food samples using thermosensitive smart polymers aqueous two-phase flotation system combined with HPLC. Food Chem. 210, 1–8 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    J. Wiström, S.R. Norrby, Fluoroquinolones and bacterial enteritis, when and for whom? J. Antimicrob. Chemother. 36(1), 23–39 (1995)

    Article  Google Scholar 

  3. 3.

    S.T. Ulu, Highly sensitive spectrofluorimetric determination of lomefloxacin in spiked human plasma, urine and pharmaceutical preparations. Eur. J. Med. Chem. 44(9), 3402–3405 (2009)

    CAS  Article  Google Scholar 

  4. 4.

    S.S. Chitlange, M. Ranjane, S.B. Wankhede, D.M. Sakarkar, Stability-indicating HPTLC method for estimation of lomefloxacin hydrochloride in pharmaceutical dosage form. Int. J. PharmTech Res. 1(3), 844–851 (2009)

    CAS  Google Scholar 

  5. 5.

    M.I.R. Santoro, N.M. Kassab, A.K. Singh, E.R. Kedor-Hackmam, Quantitative determination of gatifloxacin, levofloxacin, lomefloxacin and pefloxacin fluoroquinolonic antibiotics in pharmaceutical preparations by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 40(1), 179–184 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    G. Carlucci, A. Cilli, M. Liberato, P. Mazzeo, Determination of lomefloxacin in human plasma by solid-phase extraction and high-performance liquid chromatography with UV detection. J. Pharm. Biomed. Anal. 11(11–12), 1105–1108 (1993)

    CAS  Article  Google Scholar 

  7. 7.

    J.L. Vılchez, L. Araujo, A. Prieto, A. Navalon, Differential-pulse adsorptive stripping voltammetric determination of the antibacterial lomefloxacin. J. Pharm. Biomed. Anal. 26(1), 23–29 (2001)

    Article  Google Scholar 

  8. 8.

    A. Álvarez-Lueje, C. López, L.J. Núñez-Vergara, J.A. Squella, Voltammetric behavior and analytical applications of lomefloxacin, an antibacterial fluorquinolone. J. Aoac. Int. 84(3), 649–658 (2001)

    Article  Google Scholar 

  9. 9.

    S. Wei, J. Lin, H. Li, J.-M. Lin, Separation of seven fluoroquinolones by microemulsion electrokinetic chromatography and application to ciprofloxacin, lomefloxacin determination in urine. J. Chromatogr. A 1163(1–2), 333–336 (2007)

    CAS  Article  Google Scholar 

  10. 10.

    J. Lian, X. Li, Y. Zhang, J. Pan, Preparation of lomefloxacin ion selective elctrode and its application. Fenxi Huaxue 27(10), 1 (1999)

    Google Scholar 

  11. 11.

    T. Mi, Z. Wang, S.A. Eremin, J. Shen, S. Zhang, Simultaneous determination of multiple (fluoro) quinolone antibiotics in food samples by a one-step fluorescence polarization immunoassay. J. Agric. Food Chem. 61(39), 9347–9355 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    D. Mukunzi, J. Isanga, S. Suryoprabowo, L. Liu, H. Kuang, Rapid and sensitive immunoassays for the detection of lomefloxacin and related drug residues in bovine milk samples. Food Agric. Immunol. 28(4), 599–611 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    G.C. Gomes, H. Regina, N. Salgado, P. De Pós-graduação, C. Farmacêuticas, Validation of UV spectrophotometric method for determination of lomefloxacin in pharmaceutical dosage form. Acta Farm. Bonaer. 24(3), 406–408 (2005)

    Google Scholar 

  14. 14.

    Y. Zhi-hong, H. Qing-hua, T. Rui, H. Xiao-wen, D. Yu-jing, Determination of the contents of lomefloxacin hydrochloride in lomefloxacin hydrochloride capsules with ultraviolet spectrophotometry. J. Guangdong Coll. Pharm. 6, 016 (2005)

    Google Scholar 

  15. 15.

    B.N. Suhagia, S.A. Shah, I.S. Rathod, H.M. Patel, Y.M. Rao, Spectrophotometric estimation of Lomefloxacin hydrochloride in pharmaceutical dosage form. Indian J. Pharm. Sci. 68(2), 247–249 (2006)

    CAS  Article  Google Scholar 

  16. 16.

    Li H-M, Xuan J-G, UV-spectrophotometry of lomeeloxacin hydrochloride tablets. Chin. J. Pharmaceut. 1995–12

  17. 17.

    Y. Zhou, Q. Lu, C. Liu, S. She, L. Wang, A novel spectrofluorimetric method for determination of lomefloxacin based on supramolecular inclusion complex between it and p-sulfonated calyx [4] arene. Anal. Chim. Acta 552(1–2), 152–159 (2005)

    CAS  Article  Google Scholar 

  18. 18.

    L.-H. Nie, H.-C. Zhao, X. Wang, L. Yi, Y. Lu, L.-P. Jin et al., Determination of lomefloxacin by terbium sensitized chemiluminescence method. Anal. Bioanal. Chem. 374(7–8), 1187–1190 (2002)

    CAS  Article  Google Scholar 

  19. 19.

    Y. Wu, Fluorescence property of the complex of terbium (III) with lomefloxacin and its analytical application. Phys. Test. Chem. Anal. (Part B: Chem. Anal.) 12, 017 (2007)

    Google Scholar 

  20. 20.

    Z. Tieli, Z. Huichun, J. Linpei, Photochemical fluorescence enhancement of the terbium–lomefloxacin complex and its application. Talanta 49(1), 77–82 (1999)

    CAS  Article  Google Scholar 

  21. 21.

    W. Wei, H. Wang, C. Jiang, Spectrofluorimetric determination of trace heparin using lomefloxacin-terbium probe. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 63(2), 241–246 (2006)

    Article  Google Scholar 

  22. 22.

    C. Sun, H. Ping, M. Zhang, H. Li, F. Guan, Spectroscopic studies on the lanthanide sensitized luminescence and chemiluminescence properties of fluoroquinolone with different structure. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 82(1), 375–382 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    S.R. Shah, R.H. Parikh, J.R. Chavda, N.R. Sheth, Application of Plackett–Burman screening design for preparing glibenclamide nanoparticles for dissolution enhancement. Powder Technol. 235, 405–411 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    K.M. Hosny, O.A. Ahmed, U.A. Fahmy, H.M. Alkhalidi, Nanovesicular systems loaded with a recently approved second generation type-5 phospodiesterase inhibitor (avanafil): I. Plackett–Burman screening and characterization. J. Drug Deliv. Sci. Technol. 43, 154–159 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    M.S. Elazazy, M. El-Hamshary, M. Sakr, H.S. Al-Easa, Plackett–Burman and Box–Behnken designs as chemometric tools for micro-determination of l-Ornithine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 193, 397–406 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    F. Aydin, E. Yilmaz, M. Soylak, Supramolecular solvent-based microextraction method for cobalt traces in food samples with optimization Plackett–Burman and central composite experimental design. RSC Adv. 5(115), 94879–94886 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    M. Peydayesh, M. Bagheri, T. Mohammadi, O. Bakhtiari, Fabrication optimization of polyethersulfone (PES)/polyvinylpyrrolidone (PVP) nanofiltration membranes using Box–Behnken response surface method. RSC Adv. 7(40), 24995–25008 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    J.P. Maran, S. Manikandan, V. Mekala, Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box–Behnken design with desirability function. Ind. Crops Prod. 49, 304–311 (2013)

    Article  Google Scholar 

  29. 29.

    E. Heidarizadi, R. Tabaraki, Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations. Talanta 148, 237–246 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    L.V. Candioti, M.M. De Zan, M.S. Cámara, H.C. Goicoechea, Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124, 123–138 (2014)

    Article  Google Scholar 

  31. 31.

    G.E. Box, D.R. Cox, An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 211–252 (1964)

    Google Scholar 

  32. 32.

    M. Bicego, S. Baldo, Properties of the Box–Cox transformation for pattern classification. Neurocomputing 218, 390–400 (2016)

    Article  Google Scholar 

  33. 33.

    J.X. Duggan, Phosphorimetric detection in HPLC via trivalent lanthanides: high sensitivity time-resolved luminescence detection of tetracyclines using Eu3+ in a micellar post column reagent. J. Liq. Chromatogr. 14(13), 2499–2525 (1991)

    CAS  Article  Google Scholar 

  34. 34.

    X. Zhao, L. Wang, L. Du, J. Yang, J. Dong, F. Ma, Optimization of culturing conditions for isolated Arthrobacter sp. ZXY-2, an effective atrazine-degrading and salt-adaptive bacterium. RSC Adv. 7(53), 33177–33184 (2017)

    CAS  Article  Google Scholar 

  35. 35.

    D.O. Aksoy, E. Sagol, Application of central composite design method to coal flotation: modelling, optimization and verification. Fuel 183, 609–616 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    Guideline IHT, editor Validation of analytical procedures: text and methodology Q2 (R1). International Conference on Harmonization, Geneva, Switzerland; 2005.

  37. 37.

    E.R. Ziegel, Statistics and Chemometrics for Analytical Chemistry (Taylor & Francis, London, 2004).

    Google Scholar 

Download references


Not applicable.


The authors express their gratitude to Qatar University for financially supporting this work through an Internal Grant.

Author information



Corresponding author

Correspondence to Marwa A. Fouad.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Hamshary, M.S., Hanafi, R.S., Fouad, M.A. et al. Spectrophotometric and spectrofluorimetric determinations of lomefloxacin lanthanum complex in tablets using multivariate modeling and optimization stratagem. J IRAN CHEM SOC (2021). https://doi.org/10.1007/s13738-021-02162-7

Download citation


  • Lomefloxacin
  • Lanthanum
  • Plackett–Burman design
  • Box–Behnken design
  • Spectrophotometry
  • Spectrofluorimetry
  • Multivariate modeling