([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM

Abstract

Optimization of the photodegradation of direct red 16 (DR16) under visible light irradiation in the presence of new photocatalyst [n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2 (PMoWSn/TiO2) was investigated. PMoWSn/TiO2 with different ratios of PMoWSn to TiO2 (2, 11, and 20%) were synthesized by modified sol–gel hydrothermal method. Characterization of the prepared nanocatalysts was carried out by photoluminescence spectroscopy, X-ray diffraction, Fourier transform infrared, field emission scanning electron microscopy, Brunauer Emmett–Teller, and diffuse reflectance spectra. Factorial experimental design was applied to study the interaction effects of five operational variables including DR16 concentration, polyoxometalate content, catalyst loading, reaction time, and pH on the photodegradation process performance. By increasing the amount of PMoWSn, the recombination rate of electrons and holes was decreased and redshift to visible range was observed. Bandgap of the photocatalysts was evaluated from Tauc and Mott–Schottky plots. The efficient and suitable photocatalytic performance of photocatalyst can be attributed to the efficient separation of photo-generated electron–hole pairs and polarization resistance of the catalyst evaluated by Nyquist and Bode plots extracted from electrochemical impedance spectroscopy. The results showed that the photocatalytic activity of 20-PMoWSn/TiO2 was better than the other nanocatalysts. A central composite design based on response surface methodology was successfully used in optimization of the photodegradation of DR16. The optimum conditions were achieved at acidic pH (3), DR16 concentration of 20 mg/L, and polyoxometalate loading of 20 wt.%. Also this catalyst showed excellent reusability at least after four runs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    K. Tanaka, K. Padermpole, T. Hisanaga, Water Res. 34, 327 (2000)

    CAS  Article  Google Scholar 

  2. 2.

    N. Puvaneswari, J. Muthukrishnan, P. Gunasekaran, Indian J. Exp. Biol. 44, 618 (2006)

    CAS  PubMed  Google Scholar 

  3. 3.

    W. Maisang, A. Phuruangrat, S. Thongtem, S. Kaowphong, J. Kavinchan, T. Thontem, J. Iran. Chem. Soc. (2020). https://doi.org/10.1007/s13738-020-01904-3

    Article  Google Scholar 

  4. 4.

    E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, Mat. Sci. Semicon. Proc. 83, 115 (2018). https://doi.org/10.1016/j.mssp.2018.04.021

    CAS  Article  Google Scholar 

  5. 5.

    A.H. Yangjeh, S. Feizpoor, J. Iran. Chem. Soc. 17, 351 (2020). https://doi.org/10.1007/s13738-019-01771-7

    CAS  Article  Google Scholar 

  6. 6.

    V.K. Saharan, D.V. Pinjari, P.R. Gogate, A. Niruddha B. Pandit, Industrial Wastewater Treatment, Recycling and Reuse. (2014), Chapter 3 (Advanced Oxidation Technologies for Wastewater Treatment: An Overview) 141.

  7. 7.

    N. Karimzadeh, M. Babamoradi, R. Azimirad, M. Khajeh, J. Electron. Mater. 47, 5452 (2018). https://doi.org/10.1007/s11664-018-6427-y

    CAS  Article  Google Scholar 

  8. 8.

    Z. Shayegan, Ch. Lee, F. Haghighat, Chem. Eng. J. 334, 2408 (2018). https://doi.org/10.1016/j.cej.2017.09.153

    CAS  Article  Google Scholar 

  9. 9.

    E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh, RSC. Adv. 6, 96554–96562 (2016). https://doi.org/10.1039/C6RA09897E

    CAS  Article  Google Scholar 

  10. 10.

    L.O. Pereira, R.V. Lelo, G.C.M. Coelho, F. Magalhaes, J. Iran. Chem. Soc. 16, 2281 (2019)

    CAS  Article  Google Scholar 

  11. 11.

    G. Liu, L. Wang, H.G. Yang, H.M. Cheng, G.Q. Lu, J. Mater. Chem. 20, 831 (2010). https://doi.org/10.1039/B909930A

    Article  Google Scholar 

  12. 12.

    S. Ma, J. Mengn, J. Li, Y. Zhang, L. Ni, J. Membr. Sci. 453, 221 (2014). https://doi.org/10.1016/j.memsci.2013.11.021

    CAS  Article  Google Scholar 

  13. 13.

    V. Singh, Y. Zhang, L. Yang, P. Ma, D. Zhang, Ch. Zhang, L. Yu, J. Niu ID, J. Wang (2017) Molecules; 22:1351. https://doi.org/10.3390/molecules22081351.

  14. 14.

    P. Pazhooh, R. Khoshnavazi, L. Bahrami, E. Naseri, J. Iran. Chem. Soc. 15, 1775 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    Y. Li, F. Guo, Ma, H. Li, L. Chen, Y. Guo, Catal. Commun. 11, 839 (2010).https://doi.org/10.1016/j.catcom.2010.03.004.

  16. 16.

    Y. Yang, Q. Wu, Y. Guo, Ch. Hu, E. Wang, J. Mol. Catal. A: Chem. 225, 203 (2005). https://doi.org/10.1016/j.molcata.2004.08.031

    CAS  Article  Google Scholar 

  17. 17.

    P. Wang, Q-J Shan, L. Liu, C-Y. Zhao, L. Chen, J. Coord. Chem. 71, 457 (2018). doi:https://doi.org/10.1080/00958972.2018.1440393.

  18. 18.

    E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, J. Mat. Sci: Mater. Electron. 29, 20668 (2018). https://doi.org/10.1007/s10854-018-0205-8

    CAS  Article  Google Scholar 

  19. 19.

    E. Rafiee, Z. Zolfagharifar, M. Joshaghani, S. Eavani, Afr. J. Chem. 65, 138 (2012)

    CAS  Google Scholar 

  20. 20.

    T. Bezrodna, T. Gavrilko, G. Puchkovska, V. Shimanovska, J. Baran, M. Marchewka, J. Mol. Struct. 614, 315 (2002). https://doi.org/10.1016/S0022-2860(02)00266-1

    CAS  Article  Google Scholar 

  21. 21.

    T. Gholami, N. Mir, M. Masjedi-Arani, E. Noori, M. Salavati-Niasari, Mat. Sci. Semicon. Proc. 22, 101 (2014). https://doi.org/10.1016/j.mssp.2014.01.013

    CAS  Article  Google Scholar 

  22. 22.

    R. Saleh, N. Febiana Djaja, Micros. 74, 217 (2014). doi:https://doi.org/10.1016/j.spmi.2014.06.013

  23. 23.

    M.A. Rauf, M.A. Meetani, S. Hisaindee, Desalination 276, 13 (2011). https://doi.org/10.1016/j.desal.2011.03.071

    CAS  Article  Google Scholar 

  24. 24.

    M. Sohrabi, M. Ghavami, J. Hazard. Mater. 153, 1235 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.114

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    S. Bhardwaj, A. Pal, K. Chatterjee, P. Chowdhury, S. Saha, A. Barman, T.H. Rana, G.D. Sharma, S. Biswas, IJPAP 55, 73 (2017)

    Google Scholar 

  26. 26.

    N. I. M. Rosli, S.M. Lam, J. Chung Sin, I. Satoshi, A.R. Mohamed, J. Environ. Eng. 144, 04017091 (2018). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001300.

  27. 27.

    A.R. Soleymani, R. Chahardoli, M. Kaykhai, J. Ind. Eng. Chem. 44, 90 (2016). https://doi.org/10.1016/j.jiec.2016.08.009

    CAS  Article  Google Scholar 

  28. 28.

    J. Saien, M. Asgari, A.R. Soleymani, N. Taghavinia, Chem. Eng. J. 151, 295 (2009). https://doi.org/10.1016/j.cej.2009.03.011

    CAS  Article  Google Scholar 

  29. 29.

    S. Boumazaa, F. Kaouaha, D. Hamanea, M. Trari, S. Omeiri, Z. Bendjama, J. Mol. Catal. A Chem. 393, 156 (2014). https://doi.org/10.1016/j.molcata.2014.06.006

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Razi University Research Council and Iran National Science Foundation (INSF) for support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ezzat Rafiee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 169 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rafiee, E., Noori, E., Zinatizadeh, A. et al. ([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM. J IRAN CHEM SOC (2021). https://doi.org/10.1007/s13738-020-02149-w

Download citation

Keywords

  • Photocatalyst
  • Tauc plot
  • Mott–Schottky plot
  • Polyoxometalate
  • Titanium dioxide
  • Direct red 16
  • Impedance spectroscopy