The theoretical investigation of intermolecular interactions between iminophosphorane and HSX (X = F, Cl and Br)

Abstract

MP2/aug-cc-pVDZ calculations were employed to interpret the molecular interactions of iminophosphorane (IP) and HSX (X = F, Cl and Br). The halogen bond (X···N), hydrogen bond (H···N, H···X, H···S) and S···N interactions were found for complex formation between IP and HSX molecules. Among the predicted models, the S···N and H···N interactions have been recognized as important types of these interactions which were more stable than other types. Quantum theory of atoms in molecules and natural bond orbital methods were used in this study to dissect the nature of these interactions and charge distribution of IP and IP···HSX structures. To further explore the interactions, the interaction energies, the electron density (ρ), the Laplacian (∇2ρ), the bond ellipticity (ɛ), the second-order perturbation energies (E(2)) and the charge transfer qCT were analyzed. Reasonable coincidence of value has been found in these interactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    P. Hobza, R. Zahradník, Weak Intermolecular Interactions in Chemistry and Biology (Elsevier, Amsterdam, 1980)

    Google Scholar 

  2. 2.

    P. Hobza, R. Zahradník, K. Müller-Dethlefs, Collect. Czech. Chem. Comm. 71, 443 (2006)

    CAS  Article  Google Scholar 

  3. 3.

    J. Lehn, Science 295, 2400 (2002)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    D. Leckband, Q. Rev. Biophys. 34, 105 (2001)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    A.J. Stone, The Theory of Intermolecular Forces (Clarendon Press, Oxford, 1996)

    Google Scholar 

  6. 6.

    P. Hobza, K. Müller-Dethlefs, Non-covalent Interactions: Theory and Experiment (Royal Society of Chemistry, London, 2009)

    Google Scholar 

  7. 7.

    S. Scheiner, Cryst. Eng. Comm. 15, 3119 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    S. Scheiner, Hydrogen Bonding: A Theoretical Perspective (Oxford University Press, New York, 1997)

    Google Scholar 

  9. 9.

    G. Gilli, P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Oxford University Press, Oxford, 2009)

    Google Scholar 

  10. 10.

    H.H.D. Arman, P. Metrangolo, G. Resnati, Halogen Bonding: Fundamentals and Applications (Springer, New York, 2008)

    Google Scholar 

  11. 11.

    P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 38, 386 (2005)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    J.E. Del Bene, I. Alkorta, J. Elguero, J. Phys. Chem. A 112, 7925 (2008)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. 13.

    A. Kakanejadifard, S. Japelaghi, M. Ghasemian, A. Zabardasti, Struct. Chem. 26, 23 (2014)

    Article  CAS  Google Scholar 

  14. 14.

    H. Staudinger, J. Meyer, Helv. Chim. Acta 2, 635 (1919)

    CAS  Article  Google Scholar 

  15. 15.

    H. Wamhoff, G. Richardt, S. Stolben, Advances in Heterocyclic Chemistry, vol. 64 (Bonn, Germany, 1995)

    Google Scholar 

  16. 16.

    A.W. Johnson, W.C. Kaska, K.A.O. Starzewski, D. Dixon, Ylides and 1mines of Phosphorus (Wiley, New York, 1993)

    Google Scholar 

  17. 17.

    M.D. Bachi, J. Vaya, J. Org. Chem. 44, 4393 (1979)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Nie, L. Wang, M.W. Ding, J. Org. Chem. 77, 696 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    F. Palacios, C. Alonso, D. Aparicio, G. Rubiales, Tetrahedron 63, 523 (2007)

    CAS  Article  Google Scholar 

  20. 20.

    T. Ishikawa, Superbases for Organic Synthesis (Wiley, Chichester, 2009)

    Google Scholar 

  21. 21.

    H.R. Allcock, Chemistry and Applications of Polyphosphazenes (Wiley, New York, 2003)

    Google Scholar 

  22. 22.

    M. Gleria, R. de Jaeger, Synthesis and Characterization of Poly(- Organophosphazenes) (Nova Science Publishers, New York, 2004)

    Google Scholar 

  23. 23.

    A.K. Andrianov, Polyphosphazenes for Biomedical Applications (Wiley, New York, 2009)

    Google Scholar 

  24. 24.

    V. Blackstone, A.J. Lough, M. Murray, I. Manners, J. Am. Chem. Soc. 131, 3658 (2009)

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    S.A. Foster, L.Y. Leyshon, D.G. Saunders, J. Chem. Soc. Chem. Commun. 2, 29 (1973)

    Article  Google Scholar 

  26. 26.

    P. Molina, M.J. Vilaplana, Synthesis 12, 1197 (1994)

    Article  Google Scholar 

  27. 27.

    S. Wingerter, M. Pfeiffer, T. Stey, M. Bolboaca, Organometallics 20, 2730 (2001)

    CAS  Article  Google Scholar 

  28. 28.

    H. Stolzenberg, B. Weinberger, W.P. Fehlhammer, F.G. Pühlhofer, R. Weiss, Eur. J. Inorg. Chem. 21, 4263 (2005)

    Article  CAS  Google Scholar 

  29. 29.

    T.W. Chiu, Y.H. Liu, K.M. Chi, Y.S. Wen, J. Am. Chem. Soc. 127, 2686 (2005)

    Article  CAS  Google Scholar 

  30. 30.

    D. Gonbeau, G. Pfister-Guillouzo, M.R. Mazieres, Can. J. Chem. 63, 3242 (1985)

    CAS  Article  Google Scholar 

  31. 31.

    V. Sudhakar, K. Lammertsma, J. Am. Chem. Soc. 113, 1899 (1991)

    CAS  Article  Google Scholar 

  32. 32.

    J. Koketsu, Y. Ninomiya, Y. Suzuki, N. Koga, Inorg. Chem. 36, 694 (1997)

    CAS  Article  Google Scholar 

  33. 33.

    W.C. Lu, C.C. Sun, Q.J. Zang, Chem. Phys. Lett. 311, 491 (1999)

    CAS  Article  Google Scholar 

  34. 34.

    W.C. Lu, C.C. Sun, J. Mol. Struct. (Theochem). 593, 1 (2002)

    CAS  Article  Google Scholar 

  35. 35.

    Y. Xue, D. Xie, G. Yan, J. Phys. Chem. A 106, 9053 (2002)

    CAS  Article  Google Scholar 

  36. 36.

    R. Fondermann, M. Dolg, M. Raab, Chem. Phys. 325, 291 (2006)

    CAS  Article  Google Scholar 

  37. 37.

    S. Scheiner, U. Adhikari, Chem. Phys. Lett. 514, 36 (2011)

    Article  CAS  Google Scholar 

  38. 38.

    A. Zabardasti, A. Kakanejadfard, M. Ghasemian, M. Esmaeilifar, Struct. Chem. 24, 1607 (2013)

    Article  CAS  Google Scholar 

  39. 39.

    M.J. Frisch et al., Gaussian 03, Revision C.02, GAUSSIAN Inc. (Wallingford CT, 2003)

  40. 40.

    C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934)

    Article  Google Scholar 

  41. 41.

    T.H. Dunning, J. Chem. Phys. 90, 1007 (1998)

    Article  Google Scholar 

  42. 42.

    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    CAS  Article  Google Scholar 

  43. 43.

    R.F.W. Bader, Atoms in Molecules. A Quantum Theory (Oxford University Press, New York, 1990)

    Google Scholar 

  44. 44.

    R.F.W. Bader, T.S. Slee, D. Cremer, E. Kraka, J. Am. Chem. Soc. 105, 5061 (1983)

    CAS  Article  Google Scholar 

  45. 45.

    T.A. Keith, AIMAll Program, Version 10.07.01 (aim.tkgristmill.com, 2010)

  46. 46.

    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    CAS  Article  Google Scholar 

  47. 47.

    P. Politzer, D.G. Truhlar, Chemical Application of Atomic and Molecular Electrostatic Potentials (Plenum, New York, 1981)

    Google Scholar 

  48. 48.

    T.T.T. Bui, S. Dahaoui, C. Lecomte, G.R. Desiraju, E. Espinos, Angew. Chem. Int. Ed. 48, 3838 (2009)

    CAS  Article  Google Scholar 

  49. 49.

    K. Eskandari, H. Zariny, Chem. Phys. Lett. 492, 9 (2010)

    CAS  Article  Google Scholar 

  50. 50.

    C.S. Lopez, Á.R. Lera, Curr. Org. Chem. 15, 3576 (2011)

    CAS  Article  Google Scholar 

  51. 51.

    I.V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc. 125, 5973 (2003)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    P. Politzer, K.E. Riley, F.A. Bulat, J.S. Murray, Comput. Theor. Chem. 2, 998 (2012)

    Google Scholar 

  53. 53.

    T. Clark, M. Hennemann, J.S. Murray, P. Politzer, J. Mol. Model. 13, 291 (2007)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    H. Torii, M. Yoshida, J. Comput. Chem. 31, 107 (2010)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    S.J. Grabowski, Phys. Chem. Chem. Phys. 15, 7249 (2013)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Motaleb Ghasemian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4643 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghasemian, M., Japelaghi, S. The theoretical investigation of intermolecular interactions between iminophosphorane and HSX (X = F, Cl and Br). J IRAN CHEM SOC 18, 139–149 (2021). https://doi.org/10.1007/s13738-020-02013-x

Download citation

Keywords

  • Iminophosphorane
  • Hydrogen bonding
  • Halogen bonding
  • Hyperconjugation