Introducing selective electro-oxidation of aryl and alkyl sulfides protocol in a novel environmentally friendly media


Since derived products from the oxidation of sulfides are vital for pharmaceutical companies, in this paper, electro-oxidation of aryl and alkyl sulfides was investigated on the glassy carbon electrode (GC) by electrochemical techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). To choose the best electrolyte, electro-oxidation of organic sulfides was investigated in different solutions such as ethanol, propanol, acetone, acetonitrile, and acetic acid. Among them, acetic acid not only did not have the pesky peak but also produced the largest oxidation current with increasing sulfide. In the following, studies were carried out to optimize the percentage of acetic acid and sodium hydroxide solution as a supporting electrolyte and oxygen source, which eventually a mixture of 85:15 acetic acid and solution of 1 M NaOH had the best oxidation efficiency. It should be noted, this effective media is introduced and reported for the first time. Then, the electro-oxidation of several sulfides were investigated in the optimized electrolyte. Kinetic studies were performed on the introduced system and several kinetic data were determined for methyl phenyl sulfide electrochemical oxidation. Finally, a mechanism for the electro-oxidation of sulfide was proposed.

This is a preview of subscription content, log in to check access.

Fig. 2
Fig. 5
Fig. 8
Fig. 9
Fig. 11
Fig. 12
Fig. 14


  1. 1.

    I. Fernandez, N. Khiar, Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev. 103, 3651–3706 (2003)

    CAS  Article  Google Scholar 

  2. 2.

    W.R.F. Goundry, B. Adams, H. Benson, J. Demeritt, S. McKown, K. Mulholland, A. Robertson, P. Siedlecki, P. Tomlin, K. Vare, Development and scale-up of a biocatalytic process to form a chiral sulfoxide. Org. Process Res. Dev. 21, 107–113 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    E. Hristova, M. Mitov, R. Rashkov, M. Arnaudova, A. Popov, Sulphide oxidation on electrodeposited Ni-Mo-W catalysts. Bulg. Chem. Commun. 40, 291–294 (2008)

    CAS  Google Scholar 

  4. 4.

    B. Miller, A. Chen, Effect of concentration and temperature on electrochemical oscillations during sulfide oxidation on Ti/Ta2O5–IrO2 electrodes. Electrochim. Acta. 50, 2203–2212 (2005)

    CAS  Article  Google Scholar 

  5. 5.

    E. Rafiee, S. Shahebrahimi, Organic-inorganic hybrid polyionic liquid based polyoxometalate as nano porous material for selective oxidation of sulfides. J. Mol. Struct. 1139, 255–263 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    G. Abdi, A. Alizadeh, M.M. Khodaei, Highly carboxyl-decorated graphene oxide sheets as metal-free catalytic system for chemoselective oxidation of sulfides to sulfones. Mater. Chem. Phys. 201, 323–330 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    S. Rayati, E. Khodaei, M. Jafarian, A. Wojtczak, Mn-Schiff base complex supported on magnetic nanoparticles: synthesis, crystal structure, electrochemical properties and catalytic activities for oxidation of olefins and sulfides. Polyhedron 133, 327–335 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    S. Rayati, F. Nejabat, S. Zakavi, Chemoselective oxidation of sulfides to sulfoxides with urea hydrogen peroxide (UHP) catalyzed by non-, partially and fully ??-brominated meso-tetraphenylporphyrinatomanganese(III) acetate. Inorg. Chem. Commun. 40, 82–86 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    L.L. Paim, N.R. Stradiotto, Electrooxidation of sulfide by cobalt pentacyanonitrosylferrate film on glassy carbon electrode by cyclic voltammetry. Electrochim. Acta. 55, 4144–4147 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    S. Rayati, E. Khodaei, S. Shokoohi, M. Jafarian, B. Elmi, A. Wojtczak, Cu-Schiff base complex grafted onto graphene oxide nanocomposite: synthesis, crystal structure, electrochemical properties and catalytic activity in oxidation of olefins. Inorganica Chim. Acta. 466, 520–528 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    B. Miller, A. Chen, Effect of concentration and temperature on electrochemical oscillations during sulfide oxidation on Ti/Ta 2 O 5–IrO 2 electrodes. Electrochim. Acta. 50, 2203–2212 (2005)

    CAS  Article  Google Scholar 

  12. 12.

    M. Muñoz, M.A. Gallo, A. Gutiérrez-Alejandre, D. Gazzoli, C.I. Cabello, Molybdenum-containing systems based on natural kaolinite as catalysts for selective oxidation of aromatic sulfides. Appl. Catal. B Environ. 219, 683–692 (2017)

    Article  Google Scholar 

  13. 13.

    A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications (Wiley, New York, 1980)

    Google Scholar 

  14. 14.

    G.S. Ferdowsi, S.A. Seyedsadjadi, A. Ghaffarinejad, Ni nanoparticle modified graphite electrode for methanol electrocatalytic oxidation in alkaline media. J. Nanostruct. Chem. 5, 17–23 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    G.S. Ferdowsi, S.A. Seyedsadjadi, A. Ghaffarinejad, Electroless deposition of the Ni nanoparticles on the graphite electrode for glucose oxidation. Anal. Bioanal. Electrochem. 6, 379–391 (2014)

    CAS  Google Scholar 

  16. 16.

    G.S. Ferdowsi, M. Rahgozar, S.A.S. Sadjadi, A. Ghaffarinejad, Electrocatalytic methanol oxidation with Ni-B and Ni-P electroless modified graphite electrodes. Anal. Bioanal. Electrochem. 11, 774–786 (2019)

    CAS  Google Scholar 

  17. 17.

    L. Dai, Carbon-based catalysts for metal-free electrocatalysis (Curr. Opin, Electrochem, 2017)

    Google Scholar 

  18. 18.

    O. Hammerich, B. Speiser, Organic electrochemistry: revised and expanded (CRC Press, London, 2015)

    Google Scholar 

  19. 19.

    B. Zhang, M.-D. Zhou, M. Cokoja, J. Mink, S.-L. Zang, F.E. Kühn, Oxidation of sulfides to sulfoxides mediated by ionic liquids. Rsc Adv. 2, 8416–8420 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101, 19–28 (1979)

    CAS  Article  Google Scholar 

  21. 21.

    M. Jafarian, M.R. Avei, I. Danaee, F. Gobal, M.G. Mahjani, Electrochemical oxidation of saccharose on copper (hydr) oxide-modified electrode in alkaline media. Chin. J. Catal. 31, 1351–1357 (2010)

    CAS  Article  Google Scholar 

  22. 22.

    A. Ehsani, M. Bigdeloo, F. Asefi, M. Kiamehr, R. Alizadeh, Ternary nanocomposite of conductive polymer/chitosan biopolymer/metal organic framework: synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. Inorg. Chem. Commun. 115, 107885 (2020)

    CAS  Article  Google Scholar 

  23. 23.

    A. Ehsani, M.G. Mahjani, F. Babaei, H. Mostaanzadeh, Physioelectrochemical and DFT investigation of metal oxide/p-type conductive polymer nanoparticles as an efficient catalyst for the electrocatalytic oxidation of methanol. RSC Adv. 5, 30394–30404 (2015)

    Article  Google Scholar 

  24. 24.

    A. Ehsani, M.G. Mahjani, M. Jafarian, A. Naeemy, Influence of ionic surfactant on physio-electrochemical properties and fractal dimension of poly ortho aminophenol film. Prog. Org. Coat. 69, 510–516 (2010)

    CAS  Article  Google Scholar 

  25. 25.

    A. Ehsani, M.G. Mahjani, M. Jafarian, A. Naeemy, Electrosynthesis of polypyrrole composite film and electrocatalytic oxidation of ethanol. Electrochim. Acta. 71, 128–133 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    H.M. Shiri, A. Ehsani, Electrosynthesis of neodymium oxide nanorods and its nanocomposite with conjugated conductive polymer as a hybrid electrode material for highly capacitive pseudocapacitors. J. Colloid Interface Sci. 495, 102–110 (2017)

    Article  Google Scholar 

  27. 27.

    M.G. Mahjani, A. Ehsani, M. Jafarian, Electrochemical study on the semiconductor properties and fractal dimension of poly ortho aminophenol modified graphite electrode in contact with different aqueous electrolytes. Synth. Met. 160, 1252–1258 (2010)

    CAS  Article  Google Scholar 

Download references


We gratefully acknowledge the financial support provided by K. N. Toosi University of Technology Research Council to conduct this research.

Author information



Corresponding author

Correspondence to Majid Jafarian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferdowsi, G.S., Jafarian, M. & Khakyzadeh, V. Introducing selective electro-oxidation of aryl and alkyl sulfides protocol in a novel environmentally friendly media. J IRAN CHEM SOC (2020).

Download citation


  • Sulfides electro-oxidation
  • Electro-catalyst
  • Glassy carbon electrode
  • Organic sulfide