Skip to main content

Advertisement

Log in

Preparation of nanohybrid electrocatalyst based on reduced graphene oxide sheets decorated with Pt nanoparticles for hydrogen evolution reaction

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A nanohybrid of Pt nanoparticles and reduced graphene oxide (Pt/rGO) is prepared and exploited for hydrogen evolution reaction (HER) in acidic medium. At first, glassy carbon electrode (GCE) is modified by graphene oxide (GO) nanosheets. Then, during the electrochemical reduction, GO film is converted to rGO. Finally, rGO/GCE is immersed in acidic solution of mM K2PtCl6 for 20 min and then with scanning the potential of electrode from 0.00 to − 0.20 V vs. NHE, Pt (IV) ions are reduced to Pt. Characterization of Pt/rGO nanohybrid is achieved by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy. FESEM images confirm that on the surface of rGO film, Pt nanoparticles with size in the range of 5–15 nm are formed. Electrochemical experiments reveal that Pt/RGO/GCE exhibits a small onset potential of − 0.03 V vs. NHE and Tafel slope of about 33 mV dec− 1 for HER. Pt/rGO/GCE has higher electrocatalytic activity for HER than rGO/GCE and Pt/GCE. In addition, the nanohybrid presents an enhanced catalytic activity towards HER than bare Pt electrode. It is observed that the current density of HER at the Pt/rGO nanohybrid shows a little decrease after 1000 continuous potential cycles which means the good stability of the catalyst. In addition, chronoamperometric studies show that Pt/rGO/GCE exhibits a noticeable stability for HER. The obtained results allege that Pt/rGO nanohybrid can surmount the overvoltage of HER and can be used as promising electrocatalyst in HER in acidic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Rezaei, M. Mokhtarianpour, A.A. Ensafi, Hydrogen evolution reaction and formic acid oxidation by decorated nanostructural Pt/Pd on a copper-filled nanoporous stainless steel. J. Iran. Chem. Soc. 15, 955–965 (2018). https://doi.org/10.1007/s13738-018-1293-3

    Article  CAS  Google Scholar 

  2. J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9, 931–940 (2015). https://doi.org/10.1021/nn506701x

    Article  CAS  PubMed  Google Scholar 

  3. A.A. Ensafi, F. Ghadirian, M. Jafari-Asl, B. Rezaei, WS2 grafted on silicon and nano-silicon particles etched: a high-performance electrocatalyst for hydrogen evolution reaction. J. Iran. Chem. Soc. 15, 613–620 (2018). https://doi.org/10.1007/s13738-017-1261-3

    Article  CAS  Google Scholar 

  4. D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, S. Chen, Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction. Electrochim. Acta 166, 26–31 (2015). https://doi.org/10.1016/j.electacta.2015.03.067

    Article  CAS  Google Scholar 

  5. M. T.Yang, H. Du, M. Zhu, Zhang, M. Zou, Immobilization of Pt nanoparticles in carbon nanofibers: bifunctional catalyst for hydrogen evolution and electrochemical sensor. Electrochim. Acta 167, 48–54 (2015). https://doi.org/10.1016/j.electacta.2015.03.077

    Article  CAS  Google Scholar 

  6. H. Kim, H.D. Lim, J. Kim, K. Kang, Graphene for advanced Li/S and Li/air batteries. J. Mater. Chem. A 2, 33–47 (2014). https://doi.org/10.1039/C3TA12522J

    Article  CAS  Google Scholar 

  7. L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983–5992 (2010). https://doi.org/10.1039/C000417K

    Article  CAS  Google Scholar 

  8. D. He, K. Cheng, T. Peng, M. Pan, S. Mu, Graphene/carbon nanospheres sandwich supported PEM fuel cell metal nanocatalysts with remarkably high activity and stability. J. Mater. Chem. A 1, 2126–2132 (2013). https://doi.org/10.1039/C2TA00606E

    Article  CAS  Google Scholar 

  9. Y. Li, L. Tang, J. Li, Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem. Commun. 11, 846–849 (2009). https://doi.org/10.1016/j.elecom.2009.02.009

    Article  CAS  Google Scholar 

  10. L. Ma, X. Shen, H. Zhou, G. Zhu, Z. Ji, K. Chen, CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3, 5337–5343 (2015). https://doi.org/10.1039/C4TA06458E

    Article  CAS  Google Scholar 

  11. M.H. Mashhadizadeh, N. Naseri, M.A. Mehrgardi, A simple non-enzymatic strategy for adenosine triphosphate electrochemical aptasensor using silver nanoparticle-decorated graphene oxide. J. Iran. Chem. Soc. 14, 2007–2016 (2017). https://doi.org/10.1007/s13738-017-1138-5

    Article  CAS  Google Scholar 

  12. E. Yilmaz, M. Soylak, Facile and green solvothermal synthesis of palladium nanoparticle-nanodiamond-graphene oxide material with improved bifunctional catalytic properties. J. Iran. Chem. Soc. 14, 2503–2512 (2017). https://doi.org/10.1007/s13738-017-1185-y

    Article  CAS  Google Scholar 

  13. J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279–7281 (2010). https://doi.org/10.1021/ja100938r

    Article  CAS  PubMed  Google Scholar 

  14. R. Ojani, R. Valiollahi, J.B. Raoof, Comparison between graphene supported Pt hollow nanospheres and graphene supported Pt solid nanoparticles for hydrogen evolution reaction. Energy 74, 871–876 (2014). https://doi.org/10.1016/j.energy.2014.07.062

    Article  CAS  Google Scholar 

  15. G. Xu, J. Hui, T. Huang, Y. Chen, J. Lee, Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. J. Power Sources 285, 393–399 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.131

    Article  CAS  Google Scholar 

  16. A. Navaee, A. Salimi, Anodic platinum dissolution, entrapping by amine functionalized-reduced graphene oxide: a simple approach to derive the uniform distribution of platinum nanoparticles with efficient electrocatalytic activity for durable hydrogen evolution and ethanol oxidation. Electrochim. Acta 211, 322–3301 (2016). https://doi.org/10.1016/j.electacta.2016.06.019

    Article  CAS  Google Scholar 

  17. B. Devadas, T. Imae, Hydrogen evolution reaction efficiency by low loading of platinum nanoparticles protected by dendrimers on carbon materials. Electrochem. Commun. 72, 135–139 (2016). https://doi.org/10.1016/j.elecom.2016.09.022

    Article  CAS  Google Scholar 

  18. A. Döner, F. Tezcan, G. Kardaş, Electrocatalytic behavior of the Pd-modified electrocatalyst for hydrogen evolution. Int. J. Hydrogen Energy 38, 3881–3888 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.141

    Article  CAS  Google Scholar 

  19. A. Abbaspour, F. NorouzSarvestani, High electrocatalytic effect of Au–Pd alloy nanoparticles electrodeposited on microwave assisted sol–gel-derived carbon ceramic electrode for hydrogen evolution reaction. Int. J. Hydrogen Energy 38, 1883–1891 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.096

    Article  CAS  Google Scholar 

  20. M. Smiljanic, Z. Rakocevic, A. Maksic, S. Strbac, Hydrogen evolution reaction on platinum catalyzed by palladium and rhodium nanoislands. Electrochim. Acta 117, 336–343 (2014). https://doi.org/10.1016/j.electacta.2013.11.142

    Article  CAS  Google Scholar 

  21. P. Kedzierzawski, D. Oleszak, M. Janik-Czachor, Hydrogen evolution on hot and cold consolidated Ni–Mo alloys produced by mechanical alloying. Mater. Sci. Eng. A 300, 105–112 (2001). https://doi.org/10.1016/S0921-5093(00)01672-5

    Article  Google Scholar 

  22. J. Kibsgaard, Z. Chen, B. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). https://doi.org/10.1038/nmat3439

    Article  CAS  PubMed  Google Scholar 

  23. A.J. Smith, Y.H. Chang, K. Raidongia, T.Y. Chen, L.J. Li, J. Huang, Molybdenum sulfide supported on crumpled graphene balls for electrocatalytic hydrogen production. Adv. Energy Mater. 4, 1–6 (2014). https://doi.org/10.1002/aenm.201400398

    Article  CAS  Google Scholar 

  24. R. Ojani, J.B. Raoof, E. Hasheminejad, One-step electroless deposition of Pd/Pt bimetallic microstructures by galvanic replacement on copper substrate and investigation of its performance for the hydrogen evolution reaction. Int. J. Hydrogen Energy 38, 92–99 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.015

    Article  CAS  Google Scholar 

  25. J.B. Raoof, R. Ojani, S.A. Esfeden, S.R. Nadimi fabrication of bimetallic Cu/Pt nanoparticles modified glassy carbon electrode and its catalytic activity toward hydrogen evolution reaction. Int. J. Hydrogen Energy 35, 3937–3944 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.073

    Article  CAS  Google Scholar 

  26. B. Rezaei, M. Mokhtarianpour, A.A. Ensafi, Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 40, 6754–6762 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.122

    Article  CAS  Google Scholar 

  27. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  28. S. Ghasemi, S.R. Hosseini, P. Asen, Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage. Electrochim. Acta 160, 337–346 (2015). https://doi.org/10.1016/j.electacta.2015.02.002

    Article  CAS  Google Scholar 

  29. J. Yang, S. Gunasekaran, Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 51, 36–44 (2013). https://doi.org/10.1016/j.carbon.2012.08.003

    Article  CAS  Google Scholar 

  30. X.Y. Peng, X.X. Liu, D. Diamond, K.T. Lau, Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49, 3488–3496 (2011). https://doi.org/10.1016/j.carbon.2011.04.047

    Article  CAS  Google Scholar 

  31. R.A. Wasthi, R.N. Singh, Graphene-supported Pd–Ru nanoparticles with superior methanol electrooxidation activity. Carbon 51, 282–289 (2013). https://doi.org/10.1016/j.carbon.2012.08.055

    Article  CAS  Google Scholar 

  32. S. Ghasemi, F. Ahmadi, Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor. J. Power Sources 289, 129–137 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.159

    Article  CAS  Google Scholar 

  33. L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48, 781–787 (2010). https://doi.org/10.1016/j.carbon.2009.10.027

    Article  CAS  Google Scholar 

  34. Y. Ma, Y. Dai, M. Guo, C. Niu, B. Huang, Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3, 3883–3887 (2011). https://doi.org/10.1039/C1NR10577A

    Article  CAS  PubMed  Google Scholar 

  35. B. Pierozynski, Hydrogen evolution reaction at Pd-modified carbon fiber and nickel-coated carbon fiber materials. Int. J. Hydrogen Energy 38, 7733–7740 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.092

    Article  CAS  Google Scholar 

  36. J. Barber, S. Morin, B. Conway, Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H. J. Electroanal. Chem. 446, 125–138 (1998). https://doi.org/10.1016/S0022-0728(97)00652-9

    Article  CAS  Google Scholar 

  37. A. Ramadoss, S.J. Kim, Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63, 434–445 (2013). https://doi.org/10.1016/j.carbon.2013.07.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S., Hosseini, S.R. & Nabipour, S. Preparation of nanohybrid electrocatalyst based on reduced graphene oxide sheets decorated with Pt nanoparticles for hydrogen evolution reaction. J IRAN CHEM SOC 16, 101–109 (2019). https://doi.org/10.1007/s13738-018-1485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1485-x

Keywords

Navigation