Advertisement

Journal of the Iranian Chemical Society

, Volume 15, Issue 7, pp 1625–1632 | Cite as

Immobilized different amines on modified magnetic nanoparticles as catalyst for biodiesel production from soybean oil

  • Faezeh Farzaneh
  • Zahra Mohammadi
  • Zahra Azarkamanzad
Original Paper
  • 71 Downloads

Abstract

Fe3O4 nanoparticles were modified with tetraethylorthosilicate (TEOS) and (3-chloropropyl)trimethoxysilane (CPTMS) followed by immobilization with different amines such as guanine, piperazine, methylamine, morpholine, aniline, ethylenediamine, 3-aminopropyltriethoxysilane, and melamine, designated as Fe3O4@SiO2@CPTMS@amine (nanocatalyst). The prepared nanocatalysts were characterized by means of FTIR, XRD, VSM, SEM, and TEM. Trans-esterification reactions of soybean oil with methanol were then carried out in the presence of the Fe3O4@SiO2@CPTMS@amine as a nanocatalyst. Optimization of the reaction parameters revealed that the fatty acid methyl esters (FAMEs or biodiesel) is obtained in 6–96% yields by using methanol to oil molar ratio of 36 in the presence of 6% of nanocatalysts containing melamine and guanine, respectively, at 160 °C within 3 h. The stability and reusability of the catalyst as well as the effect of reaction parameters on the FAME yield are described in this paper.

Keywords

Modified magnetic nanoparticles Amines Biodiesel production 

Notes

Acknowledgements

The financial support from the Alzahra University is gratefully acknowledged.

Supplementary material

13738_2018_1360_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2498 kb)

References

  1. 1.
    R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Adv. Mater. 22, 2729 (2010)CrossRefPubMedGoogle Scholar
  2. 2.
    I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug. Deliv. Rev. 54, 631 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    A.K. Gupta, M. Gupt, Biomaterials 26, 3995 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    B. Shen, Y. Wang, Z. Wang, React. Kinet. Mech. Catal. 101, 387 (2010)CrossRefGoogle Scholar
  5. 5.
    A.H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRefGoogle Scholar
  6. 6.
    R.N. Grass, E.K. Athanassiou, W.J. Stark, Angew. Chem. Int. Ed. 46, 4909 (2007)CrossRefGoogle Scholar
  7. 7.
    A.H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth, Angew. Chem. Int. Ed. 43, 4303 (2004)CrossRefGoogle Scholar
  8. 8.
    S.C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Angew. Chem. Int. Ed. 43, 5645 (2004)CrossRefGoogle Scholar
  9. 9.
    K.M. Yeo, S.I. Lee, Y.T. Lee, Y.K. Chung, I.S. Lee, Chem. Lett. 37, 116 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 46, 7039 (2007)CrossRefGoogle Scholar
  11. 11.
    W.-R. Huck, T. Bürgi, T. Mallat, A. Baiker, J. Catal. 216, 276 (2003)CrossRefGoogle Scholar
  12. 12.
    R. Abu-Reziq, D. Wang, M. Post, H. Alper, Adv. Synth. Catal. 349, 2145 (2007)CrossRefGoogle Scholar
  13. 13.
    M.J. Jacinto, P.K. Kiyohara, S.H. Masunaga, R.F. Jardim, L.M. Rossi, Appl. Catal. A Gen. 338, 52 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed. 49, 3428 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Yan, X. Li, G. Wang, X. Gui, G. Li, F. Su, Appl. Energy 113, 1614 (2014)CrossRefGoogle Scholar
  16. 16.
    P.D. Patil, V.G. Gude, Sh Deng, Ind. Eng. Chem. Res. 34, 10850 (2009)CrossRefGoogle Scholar
  17. 17.
    C.R. Coronado, J.A. Carvalho, J.L. Silveira, Fuel Process. Technol. 90, 204 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Lu, X. Yu, Sh Yang, H. Yang, Sh Tung Tu, Fuel 165, 215 (2016)CrossRefGoogle Scholar
  19. 19.
    A. SivasamyKien, Y. Cheah, P. Fornasiero, F. Kemausuor, S. Zinoviev, S. Miertus, ChemSusChem 2, 278 (2009)CrossRefGoogle Scholar
  20. 20.
    J.M. Marchetti, V.U. Miguel, A.F. Errazu, Renew. Sustain. Energy Rev. 11, 1300 (2007)CrossRefGoogle Scholar
  21. 21.
    D.Y.C. Leung, X. Wu, M.K.H. Leung, Appl. Energy 87, 1083 (2010)CrossRefGoogle Scholar
  22. 22.
    M.R. Shahbazi, B. Khoshandam, M. Ghazvini Nasiri, J. Taiwan Ins. Chem. Eng. 43, 504 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Demirbas, Energy Convers. Manag. 49, 125 (2008)CrossRefGoogle Scholar
  24. 24.
    A.F. Lee, J.A. Bennett, J.C. Manayil, L. Wilson, Chem. Soc. Rev. 43, 7887 (2014)CrossRefPubMedGoogle Scholar
  25. 25.
    S.S. Vieira, Z.M. Magriotis, N.A.V. Santos, A.A. Saczk, C.E. Hori, P.A. Arroyo, Bioresour. Technol. 133, 248 (2013)CrossRefPubMedGoogle Scholar
  26. 26.
    A. Carrero, G. Vicente, R. Rodriguez, M. Linares, G.L. del Peso, Catal. Today 167, 148 (2011)CrossRefGoogle Scholar
  27. 27.
    M.J. Ramos, A. Casas, L. Rodrıguez, R. Romero, A. Perez, Appl. Catal. A Gen. 346, 79 (2008)CrossRefGoogle Scholar
  28. 28.
    M.C. Albuquerque, I. Jiménez-Urbistondo, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, D.C. Azevedo, C.L. Cavalcante Jr., P. Maireles-Torres, Appl. Catal. A Gen. 334, 35 (2008)CrossRefGoogle Scholar
  29. 29.
    K. Narasimharao, D.R. Brown, A.F. Lee, A.D. Newman, P.F. Siril, S.J. Tavener, K. Wilson, J. Catal. 248, 226 (2007)CrossRefGoogle Scholar
  30. 30.
    F. Farzaneh, F. Moghzil, E. Rashtizadeh, React. Kinet. Mech. Catal. 118, 509 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Nikseresht, A. Daniyali, M. Ali-Mohammadi, A. Afzalinia, A. Mirzaie, Ultrason. Sonochem. 37, 203 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    H. Wan, C. Chen, Z. Wu, Y. Que, Y. Feng, W. Wang, L. Wang, G. Guan, X. Liu, ChemCatChem 7, 441 (2015)CrossRefGoogle Scholar
  33. 33.
    L.H. Wee, N. Janssens, S.R. Bajpe, C.E.A. Kirschhock, J.A. Martens, Catal. Today 171, 275 (2011)CrossRefGoogle Scholar
  34. 34.
    E. Rashtizadeh, F. Farzaneh, J. Taiwan Inst. Chem. Eng. 44, 917 (2013)CrossRefGoogle Scholar
  35. 35.
    E. Rashtizadeh, F. Farzaneh, Z. Talebpour, Bioresour. Technol. 154, 32 (2014)CrossRefPubMedGoogle Scholar
  36. 36.
    F. Farzaneh, B. Dashtipour, E. Rashtizadeh, J. Sol–Gel Sci. Technol. 81, 859 (2017)CrossRefGoogle Scholar
  37. 37.
    X. Liu, Z. Ma, J. Xing, H. Liu, J. Magn. Magn. Mater. 270, 1 (2004)CrossRefGoogle Scholar
  38. 38.
    Z. Asgharpour, F. Farzaneh, A. Abbasi, RSC Adv. 6, 95729 (2016)CrossRefGoogle Scholar
  39. 39.
    M.Z. Kyari, Int. Agrophys. 22, 139 (2008)Google Scholar
  40. 40.
    Z. Wang, B. Shen, Z. Aihua, N. He, Chem. Eng. J. 113, 27 (2005)CrossRefGoogle Scholar
  41. 41.
    H. Cao, J. He, L. Deng, X. Gao, Appl. Surf. Sci. 255, 7974 (2009)CrossRefGoogle Scholar
  42. 42.
    J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, J. Colloid Interface Sci. 34, 9293 (2010)Google Scholar
  43. 43.
    M. Masteri-Farahani, N. Tayyebi, J. Mol. Catal. A 348, 83 (2011)CrossRefGoogle Scholar
  44. 44.
    L. Hamidipour, F. Farzaneh, M. Ghandi, React. Kinet. Mech. Catal. 107, 421 (2012)CrossRefGoogle Scholar
  45. 45.
    X. Liu, H. He, Y. Wang, Catal. Commun. 8, 1107 (2007)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Faezeh Farzaneh
    • 1
  • Zahra Mohammadi
    • 1
  • Zahra Azarkamanzad
    • 1
  1. 1.Department of Chemistry, Faculty of Physics and ChemistryAlzahra UniversityVanak, TehranIran

Personalised recommendations