Advertisement

Journal of the Iranian Chemical Society

, Volume 15, Issue 7, pp 1551–1559 | Cite as

Determination of Congo red in food samples by methyl-β-cyclodextrin/Triton X-100 synergistic sensitized fluorescence quenching method of the derivatives of calix[4]arene

Original Paper
  • 18 Downloads

Abstract

A novel fluorescent chemosensor of the derivatives of calix[4]arene (SAX) for Congo red (CR) in methyl-β-cyclodextrin/Triton X-100 synergistic sensitized system was developed. The results showed that the fluorescence intensity of SAX could be quenched by CR, and the fluorescence quenching (∆F = FSAX − FCR-SAX) was synergistic sensitized by methyl-β-CD and Triton X-100. Under the conditions of λex/em = 332/468 nm and pH 7.5, the linear range and the detection limit for CR were found to be 0.040–8.0 μg/mL and 8.9 ng/mL, respectively. The mechanism of determination was discussed by quenching type analysis and sensitizing effect. This method has also been applied for the determination of CR in beef samples with satisfactory results.

Keywords

Congo red Methyl-β-cyclodextrin Triton X-100 Synergistic sensitization Fluorescence quenching 

Notes

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (21375117) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    R.E. Baynes, N.A. Monteiro-Riviere, G.L. Qiao, Toxicol. Lett. 93, 159 (1997)CrossRefGoogle Scholar
  2. 2.
    J.L.E. Gray, J.S. Ostby, R.J. Kavlock, Fundam. Appl. Toxicol. 19, 411 (1992)CrossRefGoogle Scholar
  3. 3.
    C.P. Zhong, W. Wei, Z.H. Wang, Food Sci. 35, 195 (2014)Google Scholar
  4. 4.
    H. Lin, C.X. Xu, C.R. Yan, Chin. J. Chromatogr. 31, 914 (2013)CrossRefGoogle Scholar
  5. 5.
    X.X. Qin, A. Bakheet, X.S. Zhu, J. Iran. Chem. Soc. 14, 2017 (2017)CrossRefGoogle Scholar
  6. 6.
    O. Sahin, M. Yilmaz, Tetrahedron Lett. 53, 2319 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Gao, Y.Q. Feng, L.S. Zhou, Chin. J. Org. Chem. 24, 713 (2004)Google Scholar
  8. 8.
    X.Y. Li, M. Li, Q.F. Chen, Food Sci. 32, 238 (2011)Google Scholar
  9. 9.
    W.J. Wang, X.S. Zhu, C.G. Yan, Food Chem. 141, 2207 (2013)CrossRefGoogle Scholar
  10. 10.
    G.F. Zhang, J.Y. Zhan, H.B. Li, Org. Lett. 13, 3392 (2011)CrossRefGoogle Scholar
  11. 11.
    L.N. Ma, X.S. Zhu, Spectrochim. Acta Part A 95, 246 (2012)CrossRefGoogle Scholar
  12. 12.
    N.M. Feng, H.Y. Zhao, J.Y. Zhan, Org. Lett. 14, 1958 (2012)CrossRefGoogle Scholar
  13. 13.
    Q. Yang, C.G. Yan, X.S. Zhu, Sens. Actuators B 191, 53 (2014)CrossRefGoogle Scholar
  14. 14.
    Q. Yang, X.X. Qin, C.G. Yan, X.S. Zhu, Sens. Actuators B 212, 183 (2015)CrossRefGoogle Scholar
  15. 15.
    X.F. Zeng, J.K. Ma, L. Luo, Org. Lett. 17, 2976 (2015)CrossRefGoogle Scholar
  16. 16.
    R. Kips, A.J. Pidduck, M.R. Houlton, A. Leenaers, J.D. Mace, O. Marie, F. Pointurier, E.A. Stefaniak, P.D.P. Taylor, S. Van den Berghe, P. Van Espen, R. Van Grieken, R. Wellum, Spectrochim. Acta Part B 64, 199 (2009)CrossRefGoogle Scholar
  17. 17.
    M. Kodama, S. Miyagawa, Anal. Chem. 52, 2358 (1980)CrossRefGoogle Scholar
  18. 18.
    B. Samiey, C.H. Cheng, J. Wu, J. Chem. 2014, 14 (2014)CrossRefGoogle Scholar
  19. 19.
    R. Guo, X.S. Zhu, Chem. J. Chin. U 8, 508 (1987)Google Scholar
  20. 20.
    X.S. Zhu, L. Bao, R. Guo, Anal. Chim. Acta 523, 43 (2004)CrossRefGoogle Scholar
  21. 21.
    A.Q. Gong, X.S. Zhu, J. Fluoresc. 23, 1279 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Sun, X.S. Zhu, M. Wu, J. Fluoresc. 17, 265 (2007)CrossRefGoogle Scholar
  23. 23.
    Z.T. Jiang, Y.X. Guo, R. Li, Food Anal. Methods 3, 47 (2010)CrossRefGoogle Scholar
  24. 24.
    F. Liu, G.P. Zhao, Chem. Res. Appl. 20, 611 (2008)Google Scholar
  25. 25.
    P. Berton, E.M. Martinis, Anal. Chim. Acta 640, 40 (2009)CrossRefGoogle Scholar
  26. 26.
    E.M. Martinis, R.A. Olsina, Anal. Chim. Acta 628, 41 (2008)CrossRefGoogle Scholar
  27. 27.
    X.S. Zhu, L.N. Ma, J. Fluoresc. 21, 321 (2011)CrossRefGoogle Scholar
  28. 28.
    G. Feng, X.S. Zhu, Chin. J. Spectrosc. Lab. 24, 1059 (2007)Google Scholar
  29. 29.
    X.S. Zhu, Y.Y. Hu, Anal. Lett. 40, 103 (2007)CrossRefGoogle Scholar
  30. 30.
    A.Q. Gong, X.S. Zhu, Y.Y. Hu, Talanta 73, 668 (2007)CrossRefGoogle Scholar
  31. 31.
    T.T. Hou, X.S. Zhu, J. Mol. Liq. 166, 17 (2012)CrossRefGoogle Scholar
  32. 32.
    X.S. Zhu, J. Sun, L. Bao, Chin. J. Appl. Chem. 23, 323 (2006)Google Scholar
  33. 33.
    X.S. Zhu, R.R. Jiang, J. Fluoresc. 21, 385 (2011)CrossRefGoogle Scholar
  34. 34.
    Q.Y. Ren, X.S. Zhu, J. Fluoresc. 26, 671 (2016)CrossRefGoogle Scholar
  35. 35.
    X. Bi, J. Sun, C.G. Yan, Chin. J. Chem. 30, 1539 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Fu, X. Zeng, L. Mu, Sens. Actuators B 164, 69 (2012)CrossRefGoogle Scholar
  37. 37.
    K.B. Vimal, P.S.P. Ajay, S. Narinder, Tetrahedron 64, 5384 (2008)CrossRefGoogle Scholar
  38. 38.
    J. Zhao, Y.J. Wei, Spectrosc. Spect. Anal. 26, 1523 (2006)Google Scholar
  39. 39.
    X.S. Zhu, A.Q. Gong, S.H. Yu, Spectrochim. Acta Part A 69, 479 (2008)Google Scholar
  40. 40.
    S. Deepa, A.K. Mishra, J. Pharm. Biomed. Anal. 38, 556 (2005)CrossRefGoogle Scholar
  41. 41.
    J.R. Lakowicz, G. Weber, Biochemistry 12, 4161 (1973)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Qiuyi Ren
    • 1
  • Songqin Chen
    • 1
  • Chaoguo Yan
    • 1
  • Xiashi Zhu
    • 1
  1. 1.College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations