Separation of anticancer medicines carmustine, lomustine, semustine and melphalan by PAMAM dendrimer: a theoretical study

  • Masoomeh Bayat
  • Avat Arman Taherpour
  • Seyed Mohammad Elahi
  • Thomas Fellowes
Original Paper
  • 2 Downloads

Abstract

Much progress has been made in the treatment of cancer. However, it remains a significant challenge to treat as toxic chemotherapeutic drugs are often poorly tolerated when administered together, limiting the patient’s treatment options. A possible solution to this problem is anchoring drugs on the surface of nanoparticles. These systems have a variety of structures with sizes, shapes and materials which determine loading capacity, cellular targeting and stability. Dendrimers are a class of nanoparticles which have been investigated in this context. In this study, we investigated the functionalization of polyamidoamine (PAMAM) dendrimers with some anticancer medications that suppresses the growth of cancer cells (carmustine, lomustine, semustine and melphalan; 1–4). The possibility of drug release, drug delivery and drug separation by PAMAM was theoretically investigated and discussed. The predicted theoretical method will be interesting to remove the pollutants from the medical solutions by PAMAM dendrimer nanoclusters. The results of the modeling were obtained by MMFF94 and RHF/PM6 methods for all form of the PAMAM–medicines complexes. The obtained results by these two methods were shown same trend of the relative energy surfaces of the complexes of PAMAM–medicines 1–4.

Keywords

Polyamidoamine (PAMAM) dendrimers Anticancer medicines Carmustine Lomustine Semustine Melphalan Nanostructures Drug release Drug delivery Drug separation Molecular modeling 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

5. References

  1. 1.
    S.H. Medina, M.E.H. EL-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev. 109, 3141–3157 (2009)CrossRefGoogle Scholar
  2. 2.
    B. Klajnert, M. Bryszewska, Dendrimers properties and applications. Acta Bio Chim. Pol. 48(1), 199–208 (2001)Google Scholar
  3. 3.
    B.K. Nanjwade, H.M. Bechra, G.K. Derkar, F.V. Manvi, V.K. Nanjwade, Dendrimers emerging polymers. For drug delivery system. Eur. J. Pharm. Sci. 38, 185–196 (2009)CrossRefGoogle Scholar
  4. 4.
    M.T. Morgan, Y. Nakanishi, Y. Kroll, D.J. Griset, A.P. Carnahan, M.A. Wathier, M. Oberlies, N.H. Manikumar, G. Wani, M.C. Grinstaff, Dendrimer-encapsulated camptothecins. Cancer Res. 66(24), 11913–11921 (2006)CrossRefGoogle Scholar
  5. 5.
    R.K. Tekade, T. Dutta, V. Gajbhiye, N.K. Jain, Exploring dendrimer towards dual drug delivery. J. Microencapsul. 26(4), 287–296 (2009)CrossRefGoogle Scholar
  6. 6.
    T. Dutta, Targeting potential and anti HIV activity of mannosylated fifth generation poly (propyleneimine) dendrimers. Biochim. Biophys. Acta 1770(4), 681–686 (2007)CrossRefGoogle Scholar
  7. 7.
    T. Dutta, M.J. Garg, Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur. J. Pharm. Sci. 34(2–3), 181–189 (2008)CrossRefGoogle Scholar
  8. 8.
    T. Dutta, H. Agashe, B. Garg, B. Minakshi, K. Prahlad, J.N. Madhulika, Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J. Drug Target. 15(1), 84–96 (2007)CrossRefGoogle Scholar
  9. 9.
    C. Cheng, Y. Wu, Q. Li, Y. Xu, External electrostatic interaction versus internal encapsulation between cationic dendrimers and negatively charged drugs: which contributes more to solubility enhancement of the drugs? J. Phys. Chem. B 112(30), 8884–8890 (2008)CrossRefGoogle Scholar
  10. 10.
    P.A. Pizzo, D.G. Poplack, Principles and Practice of Pediatric Oncology, 5th edn. (Lippincott Williams & Wilkins, Philadelphia, 2006)Google Scholar
  11. 11.
    P.G. Corrie, G. Pippa, Cytotoxic chemotherapy: clinical aspects. Medicine 36(1), 24–28 (2008)CrossRefGoogle Scholar
  12. 12.
    B. Chabner, D.L. Longo, Cancer Chemotherapy and Biotherapy: Principles and Practice, 4th edn. (Lippincott Willians & Wilkins, Philadelphia, 2005)Google Scholar
  13. 13.
    G. Damia, M. D’Incalci, Mechanisms of resistance to alkylating agents. Cytotechnology 27(1–3), 165–173 (1998)CrossRefGoogle Scholar
  14. 14.
    F.P. Perera, Environment and cancer: who are susceptible? Science 278(5340), 1068–1073 (1997)CrossRefGoogle Scholar
  15. 15.
    X.C. He, Z.G. Qu, F. Xu, M. Lin, J.L. Wang, X.H. Shi, T.J. Lu, Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages. Soft Matter 10, 139–148 (2014)CrossRefGoogle Scholar
  16. 16.
    X.C. He, M. Lin, T.J. Lu, Z.G. Qu, F. Xu, Molecular analysis of interactions between a PAMAM dendrimer–paclitaxel conjugate and a biomembrane. Phys. Chem. Chem. Phys. 17, 29507–29517 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Canham, Nanosilicon for nanomedicine: a step towards biodegradable electronic implants? Nanomedicine (Lond) 8(10), 1573–1576 (2013)CrossRefGoogle Scholar
  18. 18.
    M.A. Horton, A. Khan, Medical nanotechnology in the UK: a perspective from the London centre for nanotechnology. Nanomedicine 2(1), 42–48 (2015)CrossRefGoogle Scholar
  19. 19.
    B.H. Schlegel, Ab initio molecular dynamics with born-oppenheimer and extended Lagrangian methods using atom centered basis functions. Bull. Kor. Chem. Chem. Soc. 24, 837–842 (2003)CrossRefGoogle Scholar
  20. 20.
    R. Chang, Physical Chemistry for the Biosciences (University Science Books, Sausalito, 2005)Google Scholar
  21. 21.
    E.G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics (Springer, Berlin, 2010)Google Scholar
  22. 22.
    F. Ingrosso, B. Mennucci, J. Tomasi, Quantum mechanical calculations coupled with a dynamical continuum model for the description of dielectric relaxation: time dependent Stokes shift of coumarin C153 in polar solvents. J. Mol. Liq. 108, 21–46 (2003)CrossRefGoogle Scholar
  23. 23.
    Senn HM, Thiel W, QM/MM methods for biological systems. in Atomistic approaches in modern biology. ed: pp. 173–290, Springer, Berlin (2006)Google Scholar
  24. 24.
    N. Jardillier, A. Goursot, One-electron quantum capping potential for hybrid QM/MM studies of silicate molecules and solids. Chem. Phys. Lett. 454, 65–69 (2008)CrossRefGoogle Scholar
  25. 25.
    D. Young, Computational chemistry: a practical guide for applying techniques to real world problems (John Wiley & Sons Inc, New York, 2004)Google Scholar
  26. 26.
    V.D. Khavryuchenko, O.V. Khavryuchenko, V.V. Lisnyak, High multiplicity states in disordered carbon systems: Ab initio and semiempirical study. Chem. Phys. 368, 83–86 (2010)CrossRefGoogle Scholar
  27. 27.
    Stewart JJP, Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements, J. Mol. Model. 13(12), 1173–1213 (2007). http://www.semichem.com/ampac/pm6.php. https://en.wikipedia.org/wiki/Semi-empirical_quantum_chemistry_method
  28. 28.
    J.J.P. Stewart, Application of the PM6 method to modeling the solid state. J. Mol. Model. 14(6), 499–535 (2008)CrossRefGoogle Scholar
  29. 29.
    J.J.P. Stewart, Application of the PM6 method to modeling proteins. J. Mol. Mod. 15(7), 765–805 (2009)CrossRefGoogle Scholar
  30. 30.
    Spatran’10-Quantum Mechanics Program: (PC/x86)-1.1.0v4. 2011, Wavefunction Inc., USAGoogle Scholar
  31. 31.
    P. Atkins, J. de Paula, Physical Chemistry, 8th edn. (Oxford University Press, New York, 2006)Google Scholar
  32. 32.
    R.G. Mortimer, Physical Chemistry, 3rd edn. (Elsevier Inc., USA, 2008)Google Scholar
  33. 33.
    Parimala K, Balachandran V, Vibrational spectroscopic (FTIR and FT Raman) studies, first order hyperpolarizabilities and HOMO, LUMO analysis of p-toluenesulfonyl isocyanate using ab initio HF and DFT methods, Spectrochim. Acta A Mol. Biomol. Spectros 81(1), 711–723 (2011). http://en.wikipedia.org/w/index.php? title = Mulliken_population_analysis&oldid = 572345005
  34. 34.
    J.G. Bundy, A.W.J. Morriss, D.G. Durham, C.D. Campbell, G.I. Paton, Development of QSARs to investigate the bacterial toxicity and biotransformation potential of aromatic heterocylic compounds. Chemosphere 42, 885–892 (2001)CrossRefGoogle Scholar
  35. 35.
    A. Li, S.H. Yalkowsky, Predicting cosolvency. 1. Solubility ratio and solute logK ow. Ind. Eng. Chem. Res. 37, 4470–4475 (1998)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Masoomeh Bayat
    • 1
  • Avat Arman Taherpour
    • 2
    • 3
  • Seyed Mohammad Elahi
    • 1
  • Thomas Fellowes
    • 4
    • 5
  1. 1.Department of Physics, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Organic Chemistry, Faculty of ChemistryRazi UniversityKermanshahIran
  3. 3.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran
  4. 4.School of ChemistryUniversity of MelbourneMelbourneAustralia
  5. 5.Bio21 InstituteUniversity of MelbourneMelbourneAustralia

Personalised recommendations