Skip to main content
Log in

Multivariate statistical design optimization for ultrasonic-assisted restricted access supramolecular solvent-based liquid phase microextraction of quercetin in food samples

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this method, quercetin as a flavonoid has been extracted, preconcentrated and determined by using ultrasonic-assisted restricted access supramolecular solvent-based liquid phase microextraction method in food samples. The quercetin concentration in extraction phase was determinated by UV–visible spectrophotometer which has microsampling cuvette. Multivariate statistical design approach was used to optimize the analytical variables including the pH, ratio of restricted access solvent components, volume of restricted access solvent, ultrasonication and centrifugation times. The analytical performance values of the developed method including limit of detection, limit of quantification, preconcentration factor and relative standard deviation (10 replicates of 10–5 M of quercetin solution) were found as 2.98, 9.93 μg L−1, 30 and 6.3%, respectively. The method provides important advantages such as use of minimum volume of organic solvents, simple and economical operation and easy optimization via multivariate statistical design approach. The developed procedure was validated with four food samples, and acceptable recoveries (87–104%) were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C. Fischer, V. Speth, S.F. Eberenz, G. Neuhaus, Plant Cell 9, 1767–1780 (1997)

    Article  CAS  Google Scholar 

  2. J.Y. Li, C. Han, J. Yang, M.T. Chaudhry, S. Wang, H. Liu, Y.Y. Yao, Nutrients 8, 1–14 (2016)

    Google Scholar 

  3. J.M. Davis, E.A. Murphy, M.D. Carmichael, Curr. Sports Med. Rep. 8, 206–213 (2009)

    Article  Google Scholar 

  4. T. Asadollahi, S. Dadfarnia, A.M.H. Shabani, M.A. Kavei, J. Food Sci. Technol. 52, 1103–1109 (2015)

    Article  CAS  Google Scholar 

  5. F.S. Dias, M.F. Silva, J.M. David, Food Anal. Methods 6, 963–968 (2013)

    Article  Google Scholar 

  6. S. Nathiya, M. Durga, T. Devasena, Int. J. Pharm. Pharm. Sci. 6, 20–26 (2014)

    Google Scholar 

  7. L. Aguirre, N. Arias, M.T. Macarulla, A. Gracia, M.P. Portillo, Open Nutraceuticals J. 4, 189–198 (2011)

    Article  CAS  Google Scholar 

  8. Y. He, Z. He, F. He, H. Wan, Y.Z. Ruan, Pharmacogn. Mag. 8, 263–267 (2012)

    Article  CAS  Google Scholar 

  9. H.N.A. Hassan, B.N. Barsoum, I.H.I. Habib, J. Pharm. Biomed. Anal. 20(1), 315–320 (1999)

    Article  CAS  Google Scholar 

  10. M. Buchweitz, P.A. Kroon, G.T. Rich, P.J. Wilde, Food Chem. 211, 356–364 (2016)

    Article  CAS  Google Scholar 

  11. M. Bancirova, Chem. J. 1, 31–34 (2015)

    Google Scholar 

  12. S.H. Hakkinen, S.O. Kärenlampi, I.M. Heinonen, H.M. Mykkänen, A.R. Törrönen, J. Agric. Food Chem. 47, 2274–2279 (1999)

    Article  CAS  Google Scholar 

  13. G. Williamson, C. Manach, Am. J. Clin. Nutr. 81, 243S–255S (2005)

    CAS  Google Scholar 

  14. W. Wiczkowski, J. Romaszko, A. Bucinski, D.S. Nowak, J. Honke, H. Zielinski, M.K. Piskula, J. Nutr. 138, 885–888 (2008)

    CAS  Google Scholar 

  15. M.J. Ko, C.I. Cheigh, S.W. Cho, M.S. Chung, J. Food Eng. 102, 327–333 (2011)

    Article  CAS  Google Scholar 

  16. D. Watson, E. Oliveira, J. Chromatogr. B 723, 203–210 (1999)

    Article  CAS  Google Scholar 

  17. A. Molinelli, R. Weiss, B. Mizaikoff, J. Agric. Food Chem. 50, 1804–1808 (2002)

    Article  CAS  Google Scholar 

  18. Y. Numata, H. Tanaka, Food Chem. 126, 751–755 (2011)

    Article  CAS  Google Scholar 

  19. E. Ranjbari, P. Biparva, M.R. Hadjmohammadi, Talanta 89, 117–123 (2012)

    Article  CAS  Google Scholar 

  20. F. Shah, M. Soylak, T.G. Kazi, H.I. Afridi, J. Anal. At. Spectrom. 27, 1960–1965 (2012)

    Article  CAS  Google Scholar 

  21. A.E. Mitchell, Y.J. Hong, E. Koh, D.M. Barrett, D.E. Bryant, R.F. Denison, S. Kaffka, J. Agric. Food Chem. 55, 6154–6159 (2007)

    Article  CAS  Google Scholar 

  22. S.M. Somerset, L. Johannot, Nutr. Cancer 60, 442–449 (2008)

    Article  CAS  Google Scholar 

  23. A.A. Aziz, C.A. Edwards, M.E. Lean, A. Crozier, Free Radic. Res. 29, 257–269 (1998)

    Article  CAS  Google Scholar 

  24. S. Scholz, G. Williamson, Int. J. Vitam. Nutr. Res. 77, 224–235 (2007)

    Article  CAS  Google Scholar 

  25. F.J.L. Jiménez, M.R. Marcano, S. Rubio, J. Chromatogr. A 1303, 1–8 (2013)

    Article  Google Scholar 

  26. J. Sanz, M. Perez, M.T. Martinez, M. Plaza, Talanta 50, 149–164 (1999)

    Article  CAS  Google Scholar 

  27. S.L. Ferreira, W.N. Dos Santos, C.M. Quintella, B.B. Neto, J.M. Bosque-Sendra, Talanta 63, 1061–1067 (2004)

    Article  CAS  Google Scholar 

  28. S.L.C. Ferreira, H.C. dos Santos, M.S. Fernandes, M.S. de Calvalho, J. Anal. At. Spectrom. 17, 115–120 (2002)

    Article  CAS  Google Scholar 

  29. W.N.L. dos Santos, C.M.N. Santos, S.L.C. Ferreira, Microchem. J. 75, 211–221 (2003)

    Article  Google Scholar 

  30. U. Divrikli, A. Akdogan, M. Soylak, L. Elci, Talanta 79, 1287–1291 (2009)

    Article  CAS  Google Scholar 

  31. N.F. Kolachi, T.G. Kazi, S. Khan, S.K. Wadhwa, J.A. Baig, H.I. Afridi, A.Q. Shah, F. Shah, Food Chem. Toxicol. 49, 2548–2556 (2011)

    Article  CAS  Google Scholar 

  32. J.A. Baig, T.G. Kazi, A.Q. Shah, M.B. Arain, H.I. Afridi, G.A. Kandhro, S. Khan, Anal. Chim. Acta 651, 57–63 (2009)

    Article  CAS  Google Scholar 

  33. M. Soylak, E. Yilmaz, Anal. Lett. 48, 464–476 (2015)

    Article  CAS  Google Scholar 

  34. V. Suryavanshi, P. Sathe, M. Baing, G. Singh, S. Lakshmi, Chromatographia 65, 767–769 (2007)

    Article  CAS  Google Scholar 

  35. S. Zhang, S. Dong, L. Chi, P. He, Q. Wang, Y. Fang, Talanta 76, 780–784 (2008)

    Article  CAS  Google Scholar 

  36. D. Kostić, G. Miletić, S. Mitić, I. Rašić, V. Živanović, Chem. Pap. 61, 73–76 (2007)

    Google Scholar 

  37. F.D. Dias, J.M. David, J.P. David, J. Braz. Chem. Soc. 27, 1055–1059 (2016)

    Google Scholar 

  38. S.E. Nielsen, L.O. Dragsted, J. Chromatogr. B 707, 81–89 (1998)

    Article  CAS  Google Scholar 

  39. K. Ishii, T. Furuta, Y. Kasuya, J. Chromatogr. B 794, 49–56 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Zainab Manzoor Memon is thankful to the Scientific and Technological Research Council of Turkey (TUBITAK) under “2216 Research Fellowship Programme for Foreign Citizens” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Soylak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memon, Z.M., Yilmaz, E. & Soylak, M. Multivariate statistical design optimization for ultrasonic-assisted restricted access supramolecular solvent-based liquid phase microextraction of quercetin in food samples. J IRAN CHEM SOC 14, 2521–2528 (2017). https://doi.org/10.1007/s13738-017-1187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1187-9

Keywords

Navigation