Skip to main content

Advertisement

Log in

Application of novel nanostructured dinitropyrazine molten salt catalyst for the synthesis of sulfanylpyridines via anomeric based oxidation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

1,4-Dinitropyrazine-1,4-diium trinitromethanide {[1,4-pyrazine-NO2][C(NO2)3]2} as a novel nanostructured molten salt (NMS) catalyzed the synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine derivatives via the one-pot three-component condensation reaction between several aromatic aldehyde, malononitrile and benzyl mercaptan at room temperature under solvent-free conditions. The synthesized NMS catalyst was fully characterized by FTIR, 1H NMR, 13CNMR, mass, thermal gravimetric, X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy analysis. The major advantages of described methodology are mildness, ease of separation, good yields and short reaction times. A rational mechanism was suggested for the final step of the 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines synthesis. We think that the proposed mechanism has potential for entering into the graduate text book in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9

Similar content being viewed by others

References

  1. J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry (W.H. Freeman and Company, New York, 2002)

    Google Scholar 

  2. G. Hamasaka, H. Tsuji, Y. Uozumi, Synlett 26, 2037 (2015)

    Article  CAS  Google Scholar 

  3. J.A. Joule, K.M. Mills, Heterocyclic Chemistry, 5th edn. (Wiley, London, 2010)

    Google Scholar 

  4. J.M. Quintela, C. Peinador, L.M. Botana, M. Estèvez, R. Riguera, Bioorg. Med. Chem. 5, 1543 (1997)

    Article  CAS  Google Scholar 

  5. J.M. Quintela, C. Peinador, M.C. Veiga, L.M. Botana, A. Alfonso, R. Riguera, Eur. J. Med. Chem. 33, 887 (1998)

    Article  CAS  Google Scholar 

  6. J.M. Quintela, C. Peinador, Tetrahedron 52, 10497 (1996)

    Article  CAS  Google Scholar 

  7. A.M.E. Attia, A.E.H.A.A. Ismail, Tetrahedron 59, 1749 (2003)

    Article  CAS  Google Scholar 

  8. U.V. Desai, M.A. Kulkarni, K.S. Pandit, A.M. Kulkarni, P.P. Wadgaonkar, Green Chem. Lett. Rev. 7, 228 (2014)

    Article  Google Scholar 

  9. P.V. Shinde, V.B. Labade, B.B. Shingate, M.S. Shingare, J. Mol. Catal. A: Chem. 336, 100 (2011)

    Article  CAS  Google Scholar 

  10. J. Safaei-Ghomi, M.A. Ghasemzadeha, M. Mehrabi, Sci. Iran. C 20, 549 (2013)

    CAS  Google Scholar 

  11. J. Safaei-Ghomi, M.A. Ghasemzadeh, J. Sulfur Chem. 34, 233 (2013)

    Article  CAS  Google Scholar 

  12. N.M. Evdokimov, I.V. Magedov, A.S. Kireev, A. Kornienko, Org. Lett. 8, 899 (2006)

    Article  CAS  Google Scholar 

  13. N.M. Evdokimov, A.S. Kireev, A.A. Yakovenko, M.Y. Antipin, I.V. Magedov, A. Kornienko, J. Org. Chem. 72, 3443 (2007)

    Article  CAS  Google Scholar 

  14. J. Safaei-Ghomi, H. Shahbazi-Alavi, E. Heidari-Baghbahadorani, RSC Adv. 4, 50668 (2014)

    Article  CAS  Google Scholar 

  15. A. Mola, S. Hussain, RSC Adv. 4, 29750 (2014)

    Article  Google Scholar 

  16. S. Banerjee, G. Sereda, Tetrahedron Lett. 50, 6959 (2009)

    Article  CAS  Google Scholar 

  17. T.L. Greaves, C.J. Drummond, Chem. Rev. 108, 206 (2008)

    Article  CAS  Google Scholar 

  18. M. Freemantle, Chem. Eng. News 76, 32 (1998)

    Article  Google Scholar 

  19. J.H. Davis, Chem. Lett. 33, 1072 (2004)

    Article  CAS  Google Scholar 

  20. R. Hayes, G.G. Warr, R. Atkin, Chem. Rev. 115, 6357 (2015)

    Article  CAS  Google Scholar 

  21. Y. Huang, H. Gao, B. Twamley, J.M. Shreeve, Eur. J. Inorg. Chem. 14, 2025 (2007)

    Article  Google Scholar 

  22. J.T. Wu, J.G. Zhang, X. Yin, Z.Y. Cheng, C.X. Xu, New J. Chem. 39, 5265 (2015)

    Article  CAS  Google Scholar 

  23. A.J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen (Springer, Berlin, 1983)

    Book  Google Scholar 

  24. M.A. Zolfigol, F. Afsharnadery, S. Baghery, S. Salehzadeh, F. Maleki, RSC Adv. 5, 75555 (2015)

    Article  CAS  Google Scholar 

  25. M.A. Zolfigol, M. Safaiee, F. Afsharnadery, N. Bahrami-Nejad, S. Baghery, S. Salehzadeh, F. Maleki, RSC Adv. 5, 100546 (2015)

    Article  CAS  Google Scholar 

  26. M.A. Zolfigol, M. Kiafar, M. Yarie, A. Taherpour, M. Saeidi-Rad, RSC Adv. 6, 50100 (2016)

    Article  CAS  Google Scholar 

  27. M.A. Zolfigol, A. Khazaei, S. Alaie, S. Baghery, F. Maleki, Y. Bayat, A. Asghari, RSC Adv. 6, 58667 (2016)

    Article  CAS  Google Scholar 

  28. A.R. Moosavi-Zare, M.A. Zolfigol, V. Khakyzadeh, C. Böttcher, M.H. Beyzavi, A. Zare, A. Hasaninejad, R. Luque, J. Mater. Chem. A 2, 770 (2014)

    Article  CAS  Google Scholar 

  29. M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, RSC Adv. 5, 32933 (2015)

    Article  CAS  Google Scholar 

  30. M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, H. Alinezhad, M. Norouzi, RSC Adv. 5, 45027 (2015)

    Article  CAS  Google Scholar 

  31. M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, H. Alinezhad, M. Norouzi, RSC. Adv. 4, 57662 (2014)

    Article  CAS  Google Scholar 

  32. M. Ghorbani, S. Noura, M. Oftadeh, E. Gholami, M.A. Zolfigol, RSC Adv. 5, 55303 (2015)

    Article  CAS  Google Scholar 

  33. M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, J. Mol. Catal. A: Chem. 409, 216 (2015)

    Article  CAS  Google Scholar 

  34. M.A. Zolfigol, H. Gholami, V. Khakyzadeh, Principles of Organic Synthesis with a New Approach, 3rd edn. (Bu-Ali Sina University Publishers, Hamedan, 2014), p. 26

    Google Scholar 

  35. J.M. Erhardt, J.D. Wuest, J. Am. Chem. Soc. 102, 6363 (1980)

    Article  CAS  Google Scholar 

  36. T.J. Atkins, J. Am. Chem. Soc. 102, 6364 (1980)

    Article  CAS  Google Scholar 

  37. J.M. Erhardt, E.R. Grover, J.D. Wuest, J. Am. Chem. Soc. 102, 6365 (1980)

    Article  CAS  Google Scholar 

  38. All of the calculations were performed by: Spatran’ 10-Quantum Mechanics Program: (PC/x86) 1.1.0v4. 2011, Wave function Inc., USA

Download references

Acknowledgements

We thank Bu-Ali Sina University, Iran National Science Foundation (INSF, Grant No: 95831207) and National Elites Foundation for financial support to our research group.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ali Zolfigol or Maliheh Safaiee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16006 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfigol, M.A., Safaiee, M., Ebrahimghasri, B. et al. Application of novel nanostructured dinitropyrazine molten salt catalyst for the synthesis of sulfanylpyridines via anomeric based oxidation. J IRAN CHEM SOC 14, 1839–1852 (2017). https://doi.org/10.1007/s13738-017-1123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1123-z

Keywords

Navigation