Skip to main content
Log in

Quantum dynamics of electron capture process during H–He2+ collision

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Quantum dynamics of electron transfer (capture) phenomenon during the H–He2+ collision is investigated by solving two-dimensional time-dependent Schrödinger equation numerically using a third-order split operator technique. Results of this study, represented as the snapshots of the electron wavepacket time evolution, show significantly different dynamics for the electron of different initial orbitals (1s, 2s, 2p x and 2p y ) of the incoming hydrogen atom. This electron transfer dynamics is also detailed by calculating expansion coefficients of the projection of the evolving wavepacket onto the stationary eigenfunctions of the H and He+ species to investigate evolution of the electron density around each nucleus during the collision. The instantaneous and overall electron densities captured by the He2+ nucleus from the H atom are calculated and analyzed. It is also shown evidently and concluded that due to its quantum nature, electron crawls from one nucleus to the other in an electron transfer process during an atom–ion collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Jortner, M. Bixon, Advances in Chemical Physics, Electron Transfer-from Isolated Molecules to Biomolecules, vol. 106 (Wiley, New York, 2009)

    Google Scholar 

  2. A.M. Kuznetsov, J. Ulstrup, Electron Transfer in Chemistry and Biology: An Introduction to the Theory (Wiley, New York, 1999)

    Google Scholar 

  3. L. Flamm, R. Schumann, Ann. Phys. 355, 655 (1916)

    Article  Google Scholar 

  4. G. Henderson, Proc. R. Soc. Lond. A Math. Phys. Sci. 102, 496 (1923)

    Article  Google Scholar 

  5. E. Rutherford, Philos. Mag. Ser. 6(47), 277 (1924)

    Article  Google Scholar 

  6. J. Jacobsen, Nature 117, 858 (1926)

    Article  CAS  Google Scholar 

  7. V. Balzani, Electron Transfer in Chemistry (Wiley, New York, 2001)

    Book  Google Scholar 

  8. R.E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley, New York, 2013)

    Google Scholar 

  9. R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265 (1985)

    Article  CAS  Google Scholar 

  10. V.A. Benderskii, D.E. Makarov, C.A. Wight, Chemical Dynamics at Low Temperatures, vol. 188 (Wiley, New York, 2009)

    Google Scholar 

  11. J. Cowan, J. Biol. Inorg. Chem. 3, 195 (1998)

    Article  CAS  Google Scholar 

  12. H. Lund, K. Daasbjerg, T. Lund, S.U. Pedersen, Electron Transfer in Some Nucleophilic Reactions. Macromolecular Symposia (Wiley, New York, 1998)

    Google Scholar 

  13. V. Benderskii, V. Goldanskii, D.E. Makarov, Phys. Rep. 233, 195 (1993)

    Article  Google Scholar 

  14. B. Bransden, M. McDowell, E.J. Mansky, Phys. Today 46, 124 (1993)

    Article  Google Scholar 

  15. D. Dewangan, J. Eichler, Phys. Rep. 247, 59 (1994)

    Article  CAS  Google Scholar 

  16. J. Eichler, Lectures on Ion-Atom Collisions: From Nonrelativistic to Relativistic Velocities (Gulf Professional Publishing, Boston, 2005)

    Google Scholar 

  17. H. Sabzyan, M. Jenabi, J. Chem. Phys. 144, 134306 (2016)

    Article  CAS  Google Scholar 

  18. M. Machholm, C. Courbin, J. Phys. B At. Mol. Opt. Phys. 27, 4703 (1994)

    Article  CAS  Google Scholar 

  19. A.D. Bandrauk, H. Shen, Chem. Phys. Lett. 176, 428 (1991)

    Article  CAS  Google Scholar 

  20. A.D. Bandrauk, H. Shen, J. Chem. Phys. 99, 1185 (1993)

    Article  CAS  Google Scholar 

  21. M. Feit, J. Fleck, J. Chem. Phys. 78, 301 (1983)

    Article  CAS  Google Scholar 

  22. M. Feit, J. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)

    Article  CAS  Google Scholar 

  23. M. Feit, J. Fleck Jr., J. Chem. Phys. 80, 2578 (1984)

    Article  CAS  Google Scholar 

  24. M. Suzuki, Phys. Lett. A 113, 299 (1985)

    Article  Google Scholar 

  25. R.P. Feynman, Phys. Rev. 84, 108 (1951)

    Article  Google Scholar 

  26. A.D. Bandrauk, H. Lu, J. Theor. Comput. Chem. 12, 1340001 (2013)

    Article  Google Scholar 

  27. C.S. Lent, Learning to Program with MATLAB: Building GUI Tools (Wiley, New York, 2013)

    Google Scholar 

  28. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  CAS  Google Scholar 

  29. U. Riss, H.-D. Meyer, J. Phys. B At. Mol. Opt. Phys. 28, 1475 (1999)

    Article  Google Scholar 

  30. U. Riss, H.D. Meyer, J. Chem. Phys. 105, 1409 (1996)

    Article  CAS  Google Scholar 

  31. P. Sigmund, Particle Penetration and Radiation Effects Volume 2: Penetration of Atomic and Molecular Ions, vol. 179 (Springer, Berlin, 2014)

    Google Scholar 

  32. X. Yang, S. Guo, F. Chan, K. Wong, W. Ching, Phys. Rev. A 43, 1186 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Sabzyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabzyan, H., Jenabi, M.J. Quantum dynamics of electron capture process during H–He2+ collision. J IRAN CHEM SOC 14, 1815–1826 (2017). https://doi.org/10.1007/s13738-017-1121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1121-1

Keywords

Navigation