Advertisement

Journal of the Iranian Chemical Society

, Volume 14, Issue 3, pp 521–530 | Cite as

Sorption separation of Eu and As from single-component systems by Fe-modified biochar: kinetic and equilibrium study

  • Vladimír Frišták
  • Barbora Micháleková-Richveisová
  • Eva Víglašová
  • Libor Ďuriška
  • Michal Galamboš
  • Eduardo Moreno-Jimenéz
  • Martin Pipíška
  • Gerhard Soja
Original Paper

Abstract

The utilization of carbonaceous materials in separation processes of radionuclides, heavy metals and metalloids represents a burning issue in environmental and waste management. The main objective of this study was to characterize the effect of chemical modification of corncob-derived biochar by Fe-impregnations on sorption efficiency of Eu and As as a model compounds of cationic lanthanides and anionic metalloids. The biochar sample produced in slow pyrolysis process at 500 °C before (BC) and after (IBC) impregnation process was characterized by elemental, FTIR, SEM-EDX analysis to confirm the effectiveness of Fe-impregnation process. The basic physico-chemical properties showed differences in surface area and pH values of BC- and IBC-derived sorbents. Sorption processes of Eu and As by BC and IBC were characterized as a time- and initial concentration of sorbate-dependent processes. The sorption equilibrium was reached for both sorbates in 24 h of contact time. Batch equilibrium experiments revealed the increased maximum sorption capacities (Q max) of IBC for As about more than 20 times (Q max BC 0.11 and Q max IBC 2.26 mg g−1). Our study confirmed negligible effect of Fe-impregnation on sorption capacity of biochar for Eu (Q max BC 0.89 and Q max IBC 0.98 mg g−1). The iron-impregnation of biochar-derived sorbents can be utilized as a valuable treatment method to produce stable and more effective sorption materials for various xenobiotics separation from liquid wastes and aqueous solutions.

Keywords

Biochar Fe-impregnation Sorption Separation Eu As 

Notes

Acknowledgements

This work was supported by Austrian BMWFW-OeAD-ICM GmbH and Slovak Research and Development Agency under a Project No. SK 02/2016 (IZOCHAR). Part of work was performed within the frame of mobility programme (Ernst Mach Stipendium) supported by Austrian BMWFW-OeAD and Slovak Research and Development Operational Programme (ERDF:26220120014).

References

  1. 1.
    C.A. Kozlowski, J. Kozlowska, W. Pellowski, W. Walkowiak, Separation of cobalt-60, strontium-90 and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorus acids. Desalination 198, 141–148 (2006)CrossRefGoogle Scholar
  2. 2.
    G. Giakisikli, A.N. Anthemidis, Magnetic materials as sorbents for metal/metalloid preconcetration and/or separation. Anal. Chim. Acta 789, 1–16 (2013)CrossRefGoogle Scholar
  3. 3.
    T. Mőller, N. Bestaoui, M. Wierzbicki, T. Adams, A. Clearfield, Separation of lanthanum, hafnium, barium and radiotracers yttrium-88 and barium-133 using crystalline zirconium phosphate and phosphate compounds as prospective materials for a Ra-223 radioisotope generator. Appl. Radiat. Isot. 69, 947–954 (2011)CrossRefGoogle Scholar
  4. 4.
    K. Taleb, J. Markovski, M. Milosavljevic, M. Marinovic-Cincovic, J. Rusmirovic, M. Ristic, A. Marinkovic, Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron-oxide: materials performance. Chem. Eng. J. 279, 66–78 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Kang, L. Qiu, L. Fang, R. Yu, Y. Chen, X. Lu, X. Luo, A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater. J. Environ. Chem. Eng. 4, 2268–2277 (2016)CrossRefGoogle Scholar
  6. 6.
    Z. Lu, Z. Hao, J. Wang, L. Chen, Efficient removal of europium from aqueous solutions using attapulgite-iron oxide magnetic composites. J. Ind. Eng. Chem. 34, 374–381 (2016)CrossRefGoogle Scholar
  7. 7.
    N.N. Popova, L.G. Bykov, G.A. Petuhova, I.G. Tananaev, B.G. Ershov, A study of physicochemical properties of modified carbon nanomaterials intended for sorption extraction of radionuclides I. The influence of the porosity of carbon nanomaterials on their sorption properties with respect to Tc(VII). Prot. Met. Phys. Chem. Surf. 48, 665–670 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Galamboš, M. Daňo, E. Víglašová, I. Krivosudský, O. Rosskopfová, I. Novák, D. Berek, P. Rajec, Effect of competing anions on pertechnetate adsorption by activated carbon. J. Radioanal. Nucl. Chem. 304, 1219–1224 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Rajec, O. Rosskopfová, M. Galamboš, V. Frišták, G. Soja, A. Dafnomili, F. Noli, A. Ðukić, L. Matović, Sorption and desorption of pertechnetate on biochar under static batch and dynamic conditions. J. Radioanal. Nucl. Chem. (2016). doi: 10.1007/s10967-016-4811-8 Google Scholar
  10. 10.
    E. Víglašová, M. Daňo, M. Galamboš, O. Rosskopfová, P. Rajec, I. Novák, Column studies for the separation of 99mTc using activated carbon. J. Radioanal. Nucl. Chem. 307, 591–597 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Lehmann, S. Joseph, Biochar for environmental management: science, technology and implementation (Earthscan from Routledge, London, 2015)Google Scholar
  12. 12.
    V. Frišták, M. Pipíška, J. Lesný, G. Soja, W. Friesl-Hanl, A. Packová, Utilization of biochar sorbents for Cd2+, Zn2+ and Cu2+ ions separation from aqueous solutions: comparative study. Environ. Monit. Assess. 187, 4093 (2015)CrossRefGoogle Scholar
  13. 13.
    V. Frišták, W. Friesl-Hanl, M. Pipíška, M. Richveisová-Micháleková, G. Soja, The response of artificial aging to sorption properties of biochar for potentially toxic heavy metals. Nova Biotechnol. Chim. 13, 137–147 (2014)Google Scholar
  14. 14.
    V. Frišták, W. Friels-Hanl, A. Wawra, M. Pipíška, G. Soja, Effect of biochar artificial ageing on Cd and Cu sorption characteristics. J. Geochem. Explor. 159, 178–184 (2015)CrossRefGoogle Scholar
  15. 15.
    X.J. Zuo, Z. Liu, M. Chen, Effect of H2O2 concentration on copper removal using the modified hydrothermal biochar. Bioresour. Technol. 207, 262–267 (2016)CrossRefGoogle Scholar
  16. 16.
    B. Chen, Z. Chen, S. Li, A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 102, 716–723 (2011)CrossRefGoogle Scholar
  17. 17.
    C.A. Takaya, L.A. Fletcher, S. Singh, U.C. Okwuosa, A.B. Ross, Recovery of phosphate with chemically modified biochars. J. Environ. Chem. Eng. 4, 1156–1165 (2016)CrossRefGoogle Scholar
  18. 18.
    B. Micháleková-Richveisová, V. Frišták, M. Pipíška, L. Ďuriška, E. Moreno-Jimenéz, G. Soja, Iron-impregnated biochars as effective phosphate sorption materials. Environ. Sci. Pollut. Res. (2016). doi: 10.1007/s11356-016-7820-9 Google Scholar
  19. 19.
    L. Trakal, V. Veselská, I. Šafařík, M. Vítková, S. Číhalová, M. Komárek, Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 203, 318–324 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Lawrinenko, D.A. Laird, Anion exchange capacity of biochar. Green Chem. 17, 4628–4636 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Enders, J. Lehmann, Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun. Soil Sci. Plant 43, 1042–1052 (2012)CrossRefGoogle Scholar
  22. 22.
    C.A. Nunes, M.C. Guerreiro, Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Quim. Nova 34, 472–476 (2011)CrossRefGoogle Scholar
  23. 23.
    OECD-Guideline 106, OECD Guideline for the Testing of Chemicals. Adsorption–Desorption Using a Batch Equilibrium Method (Organisation for Economic Co-operation and Development (OECD), Paris, 2001)Google Scholar
  24. 24.
    J. Uhrovčík, M. Gyeváthová, J. Lesný, Possibility of the spectrophotometric determination of europium by means of Arsenazo III. Nova Biotechnol. Chim. 12, 93–99 (2013)Google Scholar
  25. 25.
    S. Azizian, Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276, 47–52 (2004)CrossRefGoogle Scholar
  26. 26.
    S. Azizian, N. Fallah, A new empirical rate equation for adsorption kinetics at solid/solution interface. Appl. Surf. Sci. 256, 5153–5156 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Sips, Combined form of Langmuir and Freundlich equations. J. Chem. Phys. 16, 490–495 (1948)CrossRefGoogle Scholar
  28. 28.
    K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Cortés, P. Araya, The Dubinin–Radushkevich–Kaganer equation. J. Chem. Soc. Faraday Trans. 82, 2473–2479 (1986)CrossRefGoogle Scholar
  30. 30.
    J.P. Gustafsson, Visual-MINTEQ, Version 3.0 (Computer Software) (Kungliga Tekniska högskolan, Stockholm, 2013)Google Scholar
  31. 31.
    X. Hu, Z. Ding, A.R. Zimmerman, S. Wang, B. Gao, Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 68, 206–216 (2015)CrossRefGoogle Scholar
  32. 32.
    J.M. De la Rosa, M. Paneque, A.Z. Miller, H. Knicker, Relating physical and chemical properties of four different bio-chars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 499, 175–184 (2014)CrossRefGoogle Scholar
  33. 33.
    N. Fiol, I. Villaescusa, M. Martínez, N. Miralles, J. Poch, J. Serarols, Sorption of Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140 (2006)CrossRefGoogle Scholar
  34. 34.
    E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 280, 309–314 (2004)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2016

Authors and Affiliations

  • Vladimír Frišták
    • 1
  • Barbora Micháleková-Richveisová
    • 2
  • Eva Víglašová
    • 3
  • Libor Ďuriška
    • 4
  • Michal Galamboš
    • 3
  • Eduardo Moreno-Jimenéz
    • 5
  • Martin Pipíška
    • 2
  • Gerhard Soja
    • 1
  1. 1.Energy Department, Environmental Resources and TechnologiesAustrian Institute of Technology GmbHTullnAustria
  2. 2.Department of ChemistryTrnava UniversityTrnavaSlovak Republic
  3. 3.Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University in BratislavaMlynská Dolina, BratislavaSlovak Republic
  4. 4.Faculty of Materials Science and Technology in TrnavaSlovak University of Technology in BratislavaTrnavaSlovak Republic
  5. 5.Departamento de Química Agrícola y BromatologíaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations