Skip to main content
Log in

QSPR for LogP using molecules without oxygen and nitrogen and quantum mechanics descriptors

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

We report a quantitative structure–property relationship (QSPR) study regarding LogP. The text includes some comments regarding the influence of diversity of molecules on results of QSPR computation. The calibration (training) set was selected, according to specific molecular diversity/similarity criteria, from certain group of 621 molecules, without oxygen and nitrogen atoms. The calibration set includes 211 molecules (hydrocarbons, halo-derivatives, thioethers, phosphines etc.) having much higher diversity from the point of view of chemical structure, size, shape and lipophilicity. The validation set includes the non-selected 410 molecules. The observed value of LogP is within (0.20, 9.14) range in calibration set and within (1.08, 9.36) range in prediction/validation set. The best QSPR multilinear formula includes three quantum mechanics descriptors and does not include molecular fragments’ descriptors. For calibration set, the predictive power of QSPR is high (r 2 = 0.9489; SEE = 0.4117), close to KOWWIN (r 2 = 0.9545; SEE = 0.3961) and miLogP (r 2 = 0.9477; SEE = 0.4736) results. The predictor ‘conductor-like screening model area’ has largest influence on the value of LogP. The quality of prediction for validation set is good (r 2 = 0.9517; SEE = 0.4334), close to result obtained by KOWWIN (r 2 = 0.9676, SEE = 0.3286) and miLogP (r 2 = 0.9612; SEE = 0.4776).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Bruijn, F. Busser, W. Seinen, J. Hermens, Environ. Toxicol. Chem. 8, 499 (1989)

    Article  Google Scholar 

  2. N. Tayar, A. Mark, R.-S. Tsai, P. Vallat, C. Altomare, B. Testa, J. Chromatogr. 181, 556 (1991)

    Google Scholar 

  3. K. Valko, J. Chromatogr. 1037 A, 299 (2004)

    Article  Google Scholar 

  4. S.M. Ulmeanu, H. Jensen, G. Bouchard, P.A. Carrupt, H.H. Girault, Pharm. Res. 20, 1317 (2003)

    Article  CAS  Google Scholar 

  5. C. Hansch, J.E. Quinlan, G.L. Lawrence, J. Org. Chem. 33, 347 (1968)

    Article  CAS  Google Scholar 

  6. A. Leo, C. Hansch, D. Elkins, Chem. Rev. 71, 525 (1971)

    Article  CAS  Google Scholar 

  7. R.F. Rekker, G.G. Nys, Eur. J. Med. Chem. 9, 361 (1974)

    Google Scholar 

  8. R.F. Rekker, H.M. de Kort, Eur. J. Med. Chem. 14, 479 (1979)

    CAS  Google Scholar 

  9. L. Tarko, ARKIVOC xiv, 74 (2004)

    Article  Google Scholar 

  10. http://www.acdlabs.com/products/phys_chem_lab/logp/competit1.html. Accessed October 2013

  11. http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm. Accessed October 2013

  12. W.M. Meylan, P.H. Howard, J. Pharm. Sci. 84, 83 (1995)

    Article  CAS  Google Scholar 

  13. R. Wang, Y. Fu, L.J. Lai, Chem. Inf. Comput. Sci. 37, 615 (1997)

    Article  CAS  Google Scholar 

  14. P. Gaillard, P.A. Carrupt, B. Testa, A. Boudon, J Comput. Aided Mol. Des. 8, 83 (1994)

    Article  CAS  Google Scholar 

  15. A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, J. Phys. Chem. 102, 3762 (1998)

    Article  CAS  Google Scholar 

  16. I. Moriguchi, S. Hirono, I. Nakagome, H. Hirano, Chem. Pharm. Bull. 42, 976 (1994)

    Article  CAS  Google Scholar 

  17. http://www.molinspiration.com/. Accessed June 2014

  18. P.G. Anoaica, E. Amzoiu, M.-B. Anoaica, L. Giubelan, Curr. Health Sci. J. 35, 1 (2009)

    Google Scholar 

  19. M. Muehlbacher, A. El Kerdawy, C. Kramer, B. Hudson, T. Clark, J. Chem. Inf. Model. 51, 2408 (2011)

    Article  CAS  Google Scholar 

  20. E.R.M. Albelo, Y.M. Ponce, S.J. Barigye, Y.E. Díaz, F.P. Giménez, J. Mex. Chem. Soc. 57, 61 (2013)

    Google Scholar 

  21. R. Kiralj, M.M.C. Ferreira, J. Braz. Chem. Soc. 20, 770 (2009)

    Article  CAS  Google Scholar 

  22. N. Goudarzi, M.J. Goudarzi, Braz. Chem. Soc. 21, 1776 (2010)

    Article  CAS  Google Scholar 

  23. P. Gramatica, P. Pilutti, E. Papa, SAR QSAR Environ. Res. 13, 743 (2002)

    Article  CAS  Google Scholar 

  24. P. Gramatica, P. Pilutti, E. Papa, QSAR Comb. Sci. 22, 364 (2003)

    Article  CAS  Google Scholar 

  25. D.M. Hawkins, S.C. Basak, D.J. Mills, Chem. Inf. Comp. Sci. 43, 579 (2003)

    Article  CAS  Google Scholar 

  26. C. Helma, SAR QSAR Environ. Res. 15, 367 (2004)

    Article  CAS  Google Scholar 

  27. P. Gramatica, QSAR Comb. Sci. 26, 694 (2007)

    Article  CAS  Google Scholar 

  28. P.P. Roy, S. Paul, I. Mitra, K. Roy, Molecules 14, 1660 (2009)

    Article  CAS  Google Scholar 

  29. P. Gramatica, P. Pilutti, Report in Joint Research Centre (European Commission), contract ECVA-CCR 496576-Z

  30. http://www.chem.sis.nlm.nih.gov/chemidplus/. Accessed October 2013

  31. J.J. Gajewski, K.E. Gilbert, PCModel. Serena Software, Bloomington

  32. http://www.openmopac.net/. Accessed October 2013

  33. J.J.P. Stewart, J. Mol. Model. 13, 1173 (2007)

    Article  CAS  Google Scholar 

  34. PRECLAV program is available from author

  35. L. Tarko, C.T. Supuran, Bioorg. Med. Chem. 21, 1404 (2013)

    Article  CAS  Google Scholar 

  36. L. Tarko, J. Math. Chem. 52, 948 (2014)

    Article  CAS  Google Scholar 

  37. L. Tarko, ARKIVOC xi, 24 (2008)

    Article  Google Scholar 

  38. L. Tarko, Rev. Chim. 55, 539 (2004)

    CAS  Google Scholar 

  39. A. Klamt, G.J. Schüürmann, Chem. Soc. Perkin Trans. 2 5, 799 (1993)

    Article  Google Scholar 

  40. L. Tarko, S. Calafeteanu, Rev. Chim. 49, 169 (1998)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Tarko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13738_2014_490_MOESM1_ESM.xls

Supplementary material 1 Supplementary information: The chemical structures, the statistical features of database, the observed and the computed values of LogP, using PRECLAV, EPISuite and miLogP, are included in supplementary material (XLS 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarko, L. QSPR for LogP using molecules without oxygen and nitrogen and quantum mechanics descriptors. J IRAN CHEM SOC 12, 359–365 (2015). https://doi.org/10.1007/s13738-014-0490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0490-y

Keywords

Navigation