Selective adsorption of ketoconazole from aqueous solutions using a new molecularly imprinted polyurethane coated magnetic multiwall carbon nanotubes

Abstract

New magnetic molecularly imprinted polyurethanes based on magnetic multi-walled carbon nanotubes (MMWNTs-MIPUs) were synthesized with specific selectivity toward ketoconazole (KTZ) as an anti-fungal drug. First, novel N-(4-carboxyphenyl) trimellitimide diisocyanate (NTDIS) was prepared from the reaction of trimellitic anhydride and 4-amino benzoic acid in two steps. Then, NTDIS was functionalized by β-cyclodextrin and methacrylic acid (MAA-NTDIS-β-CD). MAA-NTDIS-β-CD was used as a functional monomer, KTZ as a template, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent and 2,2′-azobisisobutyronitrile (AIBN) as initiator. Structure and properties of the prepared compounds were characterized by FTIR, 1H NMR, FESEM, XRD, VSM, BET, and EDX. The influence of parameters such as solution pH, contact time, temperature, and initial concentrations in controlled absorption of KTZ using MMWCNTs-MIPU and MMWCNTs-NIPU were evaluated. The kinetic data were measured using the pseudo-first-order and pseudo-second-order equation. The pseudo-second-order equation displayed the best fit for the kinetic studies (R2 0.9958). The adsorption equilibrium of KTZ using MMWCNTs-MIPU could be well-defined with the Langmuir isotherm model, and the maximum adsorption capacity was calculated as 52.35 mg g–1. The prepared MMWCNTs-MIPU can be simply separated by an external magnetic field and, MMWCNTs-MIPU can be used after six filtration-regeneration cycles.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Van der Meer J, Keuning J, Scheijgrond H, Heykants J, Cutsem JV, Brugmans J (1980) The influence of gastric acidity on the bio-availability of ketoconazole. J Antimicrob Chemother 6:552–554

    Google Scholar 

  2. 2.

    El-Shabouri SR, Emara KM, Khashaba PY, Mohamed AM (1998) Charge-transfer complexation for spectrophotometric assay of certain imidazole antifungal drugs. Anal Lett 31:1367–1385

    CAS  Google Scholar 

  3. 3.

    Esclusa-Diaz M, Guimaraens-Méndez M, Pérez-Marcos M, Vila-Jato J, Torres-Labandeira J (1996) Characterization and in vitro dissolution behaviour of ketoconazole/β-and 2-hydroxypropyl-β-cyclodextrin inclusion compounds. Int J Pharm 143:203–210

    CAS  Google Scholar 

  4. 4.

    Corcoran J, Winter MJ, Tyler CR (2010) Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40:287–304

    CAS  PubMed  Google Scholar 

  5. 5.

    Imiete IE, Viacheslovovna Alekseeva N (2018) Reverse osmosis purification: a case study of the Niger Delta region. Water Sci 32:129–137

    Google Scholar 

  6. 6.

    Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P (2005) Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Res 39:610–616

    CAS  PubMed  Google Scholar 

  7. 7.

    Seo S, Sung B, Kim G, Chu K, Um C, Yun S, Ra Y, Ko K (2010) Removal of heavy metals in an abandoned mine drainage via ozone oxidation: a pilot-scale operation. Water Sci Technol 62:2115–2120

    CAS  PubMed  Google Scholar 

  8. 8.

    Walker DJ, Hurl S (2002) The reduction of heavy metals in a stormwater wetland. Ecol Eng 18:407–414

    Google Scholar 

  9. 9.

    Gu B, Brown GM, Chiang C-C (2007) Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environ Sci Technol 41:6277–6282

    CAS  PubMed  Google Scholar 

  10. 10.

    Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40:2922–2942

    CAS  PubMed  Google Scholar 

  11. 11.

    Piletsky S, Panasyuk T, Piletskaya E, Nicholls IA, Ulbricht M (1999) Receptor and transport properties of imprinted polymer membranes: a review. J Membr Sci 157:263–278

    CAS  Google Scholar 

  12. 12.

    Gao D, Wang D-D, Fu Q-F, Wang L-J, Zhang K-L, Yang F-Q, Xia Z-N (2018) Preparation and evaluation of magnetic molecularly imprinted polymers for the specific enrichment of phloridzin. Talanta 178:299–307

    CAS  PubMed  Google Scholar 

  13. 13.

    Azizi A, Bottaro CS (2020) A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 1614:460603

    CAS  PubMed  Google Scholar 

  14. 14.

    Haginaka J (2008) Monodispersed, molecularly imprinted polymers as affinity-based chromatography media. J Chromatogr B 866:3–13

    CAS  Google Scholar 

  15. 15.

    Ding S, Lyu Z, Niu X, Zhou Y, Liu D, Falahati M, Du D, Lin Y (2020) Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review. Biosens Bioelectron 149:111830

    CAS  PubMed  Google Scholar 

  16. 16.

    Kiasat AR, Nazari S (2012) Magnetic nanoparticles grafted with β-cyclodextrin–polyurethane polymer as a novel nanomagnetic polymer brush catalyst for nucleophilic substitution reactions of benzyl halides in water. J Mol Catal A Chem 365:80–86

    CAS  Google Scholar 

  17. 17.

    Sobiech M, Maciejewska D, Luliński P (2020) Synthesis and characterization of poly(methacrylic acid-co-trimethylolpropane trimethacrylate) imprinted sorbent for analysis of biogenic amines. Mater Today Commun 22:100739

    CAS  Google Scholar 

  18. 18.

    Fayazi M, Ghanei-Motlagh M, Taher M, Ghanei-Motlagh R, Salavati M (2016) Synthesis and application of a novel nanostructured ion-imprinted polymer for the preconcentration and determination of thallium(I) ions in water samples. J Hazard Mater 309:27–36

    CAS  PubMed  Google Scholar 

  19. 19.

    Fayazi M, Taher MA, Afzali D, Mostafavi A, Ghanei-Motlagh M (2016) Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions. Mater Sci Eng C 60:365–373

    CAS  Google Scholar 

  20. 20.

    Mota JR, Bernad MB, Mayoral-Murillo J, Mora JG (2013) Synthesis and characterization of molecularly imprinted polymers with metallic zinc center for enrofloxacin recognition. React Funct Polym 73:1078–1085

    Google Scholar 

  21. 21.

    Asadi E, Abdouss M, Leblanc RM, Ezzati N, Wilson JN, Kordestani D (2016) Synthesis, characterization and in vivo drug delivery study of a biodegradable nano-structured molecularly imprinted polymer based on cross-linker of fructose. Polymer 97:226–237

    CAS  Google Scholar 

  22. 22.

    Udomsap D, Brisset H, Culioli G, Dollet P, Laatikainen K, Siren H, Branger C (2018) Electrochemical molecularly imprinted polymers as material for pollutant detection. Mater Today Commun 17:458–465

    CAS  Google Scholar 

  23. 23.

    Jiang X, Tian W, Zhao C, Zhang H, Liu M (2007) A novel sol–gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A. Talanta 72:119–125

    CAS  PubMed  Google Scholar 

  24. 24.

    Liu X, Wang Y, Wang J, Li L, Li R (2019) Hydrophilic molecularly imprinted dispersive solid-phase extraction coupled with liquid chromatography for determination of azoxystrobin residues in cucumber. Iran Polym J 28:725–734

    CAS  Google Scholar 

  25. 25.

    Zhang Y-L, Zhang J, Dai C-M, Zhou X-F, Liu S-G (2013) Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydr Polym 97:809–816

    CAS  PubMed  Google Scholar 

  26. 26.

    Surya SG, Khatoon S, Lahcen AA, Nguyen AT, Dzantiev BB, Tarannum N, Salama KN (2020) A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor. RSC Adv 10:12823–12832

    CAS  Google Scholar 

  27. 27.

    Huang D, Tang Z, Peng Z, Lai C, Zeng G, Zhang C, Xu P, Cheng M, Wan J, Wang R (2017) Fabrication of water-compatible molecularly imprinted polymer based on β-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol A from aqueous solution. J Taiwan Inst Chem Eng 77:113–121

    CAS  Google Scholar 

  28. 28.

    Li S, Wu X, Zhang Q, Li P (2016) Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin. Microchim Acta 183:1433–1439

    CAS  Google Scholar 

  29. 29.

    Gong X-Y, Cao X-J (2011) Preparation of molecularly imprinted polymers for artemisinin based on the surfaces of silica gel. J Biotechnol 153:8–14

    CAS  PubMed  Google Scholar 

  30. 30.

    Rozaini MNH, Semail N-f, Saad B, Kamaruzaman S, Abdullah WN, Rahim NA, Miskam M, Loh SH, Yahaya N (2019) Molecularly imprinted silica gel incorporated with agarose polymer matrix as mixed matrix membrane for separation and preconcentration of sulfonamide antibiotics in water samples. Talanta 199:522–531

    CAS  PubMed  Google Scholar 

  31. 31.

    Wei X, Xu X, Qi W, Wu Y, Wang L (2017) Molecularly imprinted polymer/graphene oxide modified glassy carbon electrode for selective detection of sulfanilamide. Prog Nat Sci Mater Int 27:374–379

    CAS  Google Scholar 

  32. 32.

    Cao N, Zhao F, Zeng B (2020) A novel self-enhanced electrochemiluminescence sensor based on PEI-CdS/Au@ SiO2@ RuDS and molecularly imprinted polymer for the highly sensitive detection of creatinine. Sens Actuators B Chem 306:127591

    Google Scholar 

  33. 33.

    Xu K, Yang K, Liu J, Wang Y (2020) Study on metal magnetic memory signal of buried defect in fracture process. J Magn Magn Mater 498:166139

    Google Scholar 

  34. 34.

    Yang W, Jiao F, Zhou L, Chen X, Jiang X (2013) Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2,4-dichlorophenoxyacetic acid in environmental water. Appl Surf Sci 284:692–699

    CAS  Google Scholar 

  35. 35.

    Tilloy S, Bertoux F, Mortreux A, Monflier E (1999) Chemically modified β-cyclodextrins in biphasic catalysis: a fruitful contribution of the host–guest chemistry to the transition-metal catalyzed reactions. Catal Today 48:245–253

    CAS  Google Scholar 

  36. 36.

    Bonnet P, Jaime C, Morin-Allory L (2001) α-, β-, and γ-cyclodextrin dimers. Molecular modeling studies by molecular mechanics and molecular dynamics simulations. J Org Chem 66:689–692

    CAS  PubMed  Google Scholar 

  37. 37.

    Becket G, Schep LJ, Tan MY (1999) Improvement of the in vitro dissolution of praziquantel by complexation with α-, β-and γ-cyclodextrins. Int J Pharm 179:65–71

    CAS  PubMed  Google Scholar 

  38. 38.

    Lichtenthaler FW, Immel S (1996) Molecular modelling of saccharides. Part 9. On the hydrophobic characteristics of cyclodextrins: computer-aided visualization of molecular lipophilicity patterns. Liebigs Ann 1996:27–37

    Google Scholar 

  39. 39.

    Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog Polym Sci 38:344–368

    CAS  Google Scholar 

  40. 40.

    Mhlanga SD, Mamba BB, Krause RW, Malefetse TJ (2007) Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. J Chem Technol Biotechnol Int Res Proc Environ Clean Technol 82:382–388

    CAS  Google Scholar 

  41. 41.

    Baruch-Teblum E, Mastai Y, Landfester K (2010) Miniemulsion polymerization of cyclodextrin nanospheres for water purification from organic pollutants. Eur Polym J 46:1671–1678

    CAS  Google Scholar 

  42. 42.

    Adams F, Nxumalo E, Krause R, Hoek E, Mamba B (2014) Application of polysulfone/cyclodextrin mixed-matrix membranes in the removal of natural organic matter from water. Phys Chem Earth Parts A/B/C 67:71–78

    Google Scholar 

  43. 43.

    Ye H, Zhang X, Zhao Z, Song B, Zhang Z, Song W (2017) Pervaporation performance of surface-modified zeolite/PU mixed matrix membranes for separation of phenol from water. Iran Polym J 26:193–203

    CAS  Google Scholar 

  44. 44.

    Junthip J, Promma W, Sonsupap S, Boonyanusith C (2019) Adsorption of paraquat from water by insoluble cyclodextrin polymer crosslinked with 1,2,3,4-butanetetracarboxylic acid. Iran Polym J 28:213–223

    CAS  Google Scholar 

  45. 45.

    Raeisi A, Allahyari F, Faghihi K, Hosseini-Ghazvini SM-B, Khaleghi M, Seidi F, Shabanian M (2020) A complete description on effect of β-cyclodextrin-ester as a bio-based additive for preparation of safe PVC: from synthesis to computational study. Mater Today Commun 22:100736

    CAS  Google Scholar 

  46. 46.

    Raeisi A, Shabanian M, Faghihi K (2017) Preparation of β-cyclodextrin-ester network and new organo-modified LDH as dual additives of PVA: thermal, dynamic-mechanical and migration study. Prog Org Coat 111:402–415

    CAS  Google Scholar 

  47. 47.

    Raeisi A, Faghihi K, Shabanian M (2017) Designed biocompatible nano-inhibitor based on poly(β-cyclodextrin-ester) for reduction of the DEHP migration from plasticized PVC. Carbohydr Polym 174:858–868

    CAS  PubMed  Google Scholar 

  48. 48.

    Arkas M, Allabashi R, Tsiourvas D, Mattausch E-M, Perfler R (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 40:2771–2777

    CAS  PubMed  Google Scholar 

  49. 49.

    Khodaverdi E, Aboumaashzadeh M, Tekie FSM, Hadizadeh F, Tabassi SAS, Mohajeri SA, Khashyarmanesh Z, Haghighi HM (2014) Sustained drug release using supramolecular hydrogels composed of cyclodextrin inclusion complexes with PCL/PEG multiple block copolymers. Iran Polym J 23:707–716

    CAS  Google Scholar 

  50. 50.

    Yang Z, Zeng H, Zhou X, Ji H (2012) Mechanism into selective oxidation of cinnamaldehyde using β-cyclodextrin polymer as phase-transfer catalyst. Tetrahedron 68:5912–5919

    CAS  Google Scholar 

  51. 51.

    Li X, Zhou M, Jia J, Jia Q (2018) A water-insoluble viologen-based β-cyclodextrin polymer for selective adsorption toward anionic dyes. React Funct Polym 126:20–26

    CAS  Google Scholar 

  52. 52.

    Wewering F, Jouy F, Wissenbach DK, Gebauer S, Blüher M, Gebhardt R, Pirow R, von Bergen M, Kalkhof S, Luch A (2017) Characterization of chemical-induced sterile inflammation in vitro: application of the model compound ketoconazole in a human hepatic co-culture system. Arch Toxicol 91:799–810

    CAS  PubMed  Google Scholar 

  53. 53.

    Castro-Puyana M, García-Ruiz C, Cifuentes A, Crego AL, Marina ML (2006) Identification and quantitation of cis-ketoconazole impurity by capillary zone electrophoresis–mass spectrometry. J Chromatogr A 1114:170–177

    CAS  PubMed  Google Scholar 

  54. 54.

    da Silva RCS, Mano V, Pereira AC, de Figueiredo EC, Borges KB (2016) Development of pipette tip-based on molecularly imprinted polymer micro-solid phase extraction for selective enantioselective determination of (−)-(2S, 4R) and (+)-(2R, 4S) ketoconazole in human urine samples prior to HPLC-DAD. Anal Methods 8:4075–4085

    Google Scholar 

  55. 55.

    Faghihi K, Gholizadeh M (2009) Rapid synthesis of new poly(amide-imide) s based on N-(4-carboxy phenyl) trimellitimide and hydantoin derivatives under microwave irradiation. Turk J Chem 33:87–97

    CAS  Google Scholar 

  56. 56.

    Yeganeh H, Tamami B, Ghazi I (2002) Synthesis and properties of novel diisocyanate based optically active polyimides. Eur Polym J38:2179–2185

    Google Scholar 

  57. 57.

    Sreenivasan K (1996) Grafting of β-cyclodextrin-modified 2-hydroxyethyl methacrylate onto polyurethane. J Appl Polym Sci 60:2245–2249

    CAS  Google Scholar 

  58. 58.

    Sreenivasan K (1998) Synthesis and evaluation of a beta cyclodextrin-based molecularly imprinted copolymer. J Appl Polym Sci 70:15–18

    CAS  Google Scholar 

  59. 59.

    Fayazi M, Taher MA, Afzali D, Mostafavi A (2015) Preparation of molecularly imprinted polymer coated magnetic multi-walled carbon nanotubes for selective removal of dibenzothiophene. Mater Sci Semiconduct Proc 40:501–507

    CAS  Google Scholar 

  60. 60.

    Dil NN, Sadeghi M (2018) Free radical synthesis of nanosilver/gelatin-poly(acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. J Hazard Mater 351:38–53

    CAS  PubMed  Google Scholar 

  61. 61.

    Arvand M, Hassannezhad M (2014) Magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. Mater Sci Eng C 36:160–167

    CAS  Google Scholar 

  62. 62.

    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    CAS  Google Scholar 

  63. 63.

    Bulut E, Özacar M, Şengil İA (2008) Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J Hazard Mater 154:613–622

    CAS  PubMed  Google Scholar 

  64. 64.

    Freundlich H (1907) Über die adsorption in lösungen. Zeitschrift für Phys Chem 57:385–470

    CAS  Google Scholar 

  65. 65.

    Li Z-C, Fan H-T, Zhang Y, Chen M-X, Yu Z-Y, Cao X-Q, Sun T (2011) Cd(II)-imprinted polymer sorbents prepared by combination of surface imprinting technique with hydrothermal assisted sol–gel process for selective removal of cadmium(II) from aqueous solution. Chem Eng J 171:703–710

    CAS  Google Scholar 

  66. 66.

    Abdel-Halim E, Al-Deyab SS (2014) Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. React Funct Polym 75:1–8

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of this work from the Research Council of Arak University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Khalil Faghihi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 614 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soleimani, M., Faghihi, K. Selective adsorption of ketoconazole from aqueous solutions using a new molecularly imprinted polyurethane coated magnetic multiwall carbon nanotubes. Iran Polym J (2020). https://doi.org/10.1007/s13726-020-00839-z

Download citation

Keywords

  • Molecularly imprinted polyurethane
  • Magnetic carbon nanotube
  • Diisocyanate
  • β-Cyclodextrin
  • Ketoconazole