Skip to main content
Log in

Rheological behavior of well-dispersed polypropylene/halloysite nanotube composites prepared by water-assisted mixing extrusion

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Composites of polypropylene (PP) with 5 wt% halloysite nanotubes (HNTs) were prepared by conventional extrusion and water-assisted mixing extrusion, respectively. Transmission electron microscopy showed reduced aggregation of the HNTs in the composites prepared by injection of water during extrusion, with more efficient dispersion of the HNTs. The shear rheological behavior was systematically investigated to understand the effect of the HNT dispersion on the structure of nanocomposites prepared with water injection. The application of small amplitude oscillation shear at different temperatures led to an obvious increase in the storage modulus and complex viscosity of the composites prepared with water injection; and the viscoelastic properties were not affected by temperature. In using the modified Krieger–Dougherty model, the enhanced shear viscosity was correlated with the absorption of more polymer layers on the surface of the HNTs. Furthermore, the results of start-up flow tests showed that the PP/HNT nanocomposites prepared with water injection exhibited larger overshoots at various applied shear rates. Finally, the reversal flow responses of the nanocomposites were interpreted in terms of evolution of the microstructure during the rest period through a dynamic model. In this study, two competitive kinetic constants, namely, the build-up and breakdown coefficients in the dynamic model, were considered to be related to the interaction of PP-HNTs. Thus, it could be deduced from the model that due to the increased build-up coefficient of the composites with water injection, the structural parameter was more rapidly recovered to its initial state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yin XC, Li S, Wang L, He G, Yang ZT (2017) Nanocomposites of polypropylene and halloysite nanotubes prepared by a novel vane mixer: morphology, thermal, mechanical and rheological properties. Polym Korea 41:163–172

    Article  CAS  Google Scholar 

  2. Zhang Y, Tang AD, Yang HM (2016) Applications and interfaces of halloysite nanocomposites. J Appl Clay Sci 119:8–17

    Article  CAS  Google Scholar 

  3. Rajan KP, Al-Ghamdi A, Thomas SP, Gopanna A, Chavali M (2017) Dielectric analysis of polypropylene (PP) and polylactic acid (PLA) blends reinforced with halloysite nanotubes. J Thermoplast Compos 31:1042–1053

    Article  CAS  Google Scholar 

  4. Pal P, Kundu MK, Malas A, Das CK (2014) Compatibilizing effect of halloysite nanotubes in polar-nonpolar hybrid system. J Appl Polym Sci 13:39587

    Google Scholar 

  5. Lecouvet B, Sclavons M, Bourbigot S, Devaux J, Bailly C (2011) Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer 52:4284–4295

    Article  CAS  Google Scholar 

  6. Rousseaux DDJ, Sallem Idrissi N, Baudouin AC, Devaux J, Godard P, Marchand-Brynaert J, Sclavons M (2011) Water-assisted extrusion of polypropylene/clay nanocomposites: a comprehensive study. Polymer 52:443–451

    Article  CAS  Google Scholar 

  7. Lee S, Yoo J, Lee JW (2015) Water-assisted extrusion of polypropylene/clay nanocomposites in high shear condition. J Ind Eng Chem 31:317–322

    Article  CAS  Google Scholar 

  8. Yu ZZ, Hu GH, Varlet J, Dasari A, Ma YW (2005) Water-assisted melt compounding of nylon-6/pristine montmorillonite nanocomposites. J Polym Sci Part B Polym Phys 43:1100–1112

    Article  CAS  Google Scholar 

  9. Lee N, Lee S (2018) Water-assisted extrusion of bio-based PETG/clay nanocomposites. Korea Aust Rheol J 30:47–53

    Article  Google Scholar 

  10. Stoclet G, Sclavons M, Lecouvet B, Devaux J, Van Velthem P, Boborodea A, Bourbigot S, Sallem-Idrissi N (2014) Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance. RSC Adv 4:57553–57563

    Article  CAS  Google Scholar 

  11. Touchaleaume F, Soulestin J, Sclavons M, Devaux J, Lacrampe MF, Krawczak P (2011) One-step water-assisted melt-compounding of polyamide 6/pristine clay nanocomposites: An efficient way to prevent matrix degradation. Polym Degrad Stabil 96:1890–1900

    Article  CAS  Google Scholar 

  12. Charlon S, Follain N, Chappey C, Dargent E, Soulestin J, Sclavons M, Marais S (2015) Improvement of barrier properties of bio-based polyester nanocomposite membranes by water-assisted extrusion. J Membr Sci 496:185–198

    Article  CAS  Google Scholar 

  13. Del Giudice F, Shen AQ (2017) Shear rheology of graphene oxide dispersions. Curr Opin Chem Eng 16:23–30

    Article  Google Scholar 

  14. Hernandez Y, Lozano T, Morales-Cepeda AB, Navarro-Pardo F, Angeles ME, Morales-Zamudio L, Melo-Banda JA, Sanchez-Valdes S, Martinez-Colunga G, Rodriguez F (2019) Stearic acid as interface modifier and lubricant agent of the system: polypropylene/calcium carbonate nanoparticles. Polym Eng Sci 59:E279–E285

    Article  CAS  Google Scholar 

  15. Zare Y, Rhee KY (2019) Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time. Compos B 156:100–107

    Article  CAS  Google Scholar 

  16. Wang Y, Cheng YX, Chen JX, Wu DF, Qiu YX, Yao X, Zhou YN, Chen C (2015) Percolation networks and transient rheology of polylactide composites containing graphite nanosheets with various thicknesses. Polymer 67:216–226

    Article  CAS  Google Scholar 

  17. Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46:8641–8660

    Article  CAS  Google Scholar 

  18. Hassan E, Miroslav G (2010) Linear and nonlinear rheology of polymer/layered silicate nanocomposites. J Rheol 54:539–562

    Article  CAS  Google Scholar 

  19. Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW (2007) Quantifying dispersion of layered nanocomposites via melt rheology. J Rheol 51:429–450

    Article  CAS  Google Scholar 

  20. Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non Newton Fluid Mech 141:167–179

    Article  CAS  Google Scholar 

  21. Xu CJ, Chen JX, Wu DF, Chen Y, Lv QL, Wang MQ (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property relation study. Carbohyd Polym 146:58–66

    Article  CAS  Google Scholar 

  22. Wu DF, Wu L, Zhang M, Zhao YL (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stabil 93:1577–1584

    Article  CAS  Google Scholar 

  23. Zhu JH, Wei SY, Ryu J, Budhathoki M, Liang G, Guo ZH (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948

    Article  CAS  Google Scholar 

  24. Giovino M, Pribyl J, Benicewicz B, Kumar S, Schadler L (2017) Linear rheology of polymer nanocomposites with polymer-grafted nanoparticles. Polymer 131:104–110

    Article  CAS  Google Scholar 

  25. Momani B, Sen M, Endoh M, Wang XL, Koga T, Winter HH (2016) Temperature dependent intercalation and self-exfoliation of clay/polymer nanocomposite. Polymer 93:204–212

    Article  CAS  Google Scholar 

  26. Guo YC, Yang K, Zuo XH (2016) Effects of clay platelets and natural nanotubes on mechanical properties and gas permeability of poly (lactic acid) nanocomposites. Polymer 83:246–259

    Article  CAS  Google Scholar 

  27. Singh VP, Vimal KK, Kapur GS, Sharma S, Choudhary V (2016) High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. J Polym Res 23:43

    Article  CAS  Google Scholar 

  28. Lee KS, Chang YW (2013) Thermal, mechanical, and rheological properties of poly(ɛ-caprolactone)/halloysite nanotube nanocomposites. J Appl Polym Sci 128:2807–2816

    Article  CAS  Google Scholar 

  29. Akhlaghi O, Akbulut O, Menceloglu YZ (2015) Shear and extensional rheological characterization of poly(acrylonitrile)/halloysite nanocomposite solutions. Eur Polym J 73:17–25

    Article  CAS  Google Scholar 

  30. Wang B, Huang HX (2013) Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stabil 98:1601–1608

    Article  CAS  Google Scholar 

  31. Wang YK, Xu CJ, Wu DF, Xie WY, Wang K, Xia QR, Yang H (2018) Rheology of the cellulose nanocrystals filled poly(ε-caprolactone) biocomposites. Polymer 140:167–178

    Article  CAS  Google Scholar 

  32. Hassanabadi HM, Rodrigue D (2012) Relationships between linear and nonlinear shear response of polymer nanocomposites. Rheol Acta 51:991–1005

    Article  CAS  Google Scholar 

  33. Tong J, Huang HX, Wu M (2016) Facile green fabrication of well dispersed poly(vinylidene fluoride)/graphene oxide nanocomposites with improved properties. Compos Sci Technol 129:183–190

    Article  CAS  Google Scholar 

  34. Aloui M, Soulestin J, Lacrampe MF, Krawczak P, Rousseaux D, Marchand-Brynaert J, Devaux J, Quievy N, Sclavons M (2009) A new elaboration concept of polypropylene/unmodified montmorillonite nanocomposites by reactive extrusion based on direct injection of polypropylene aqueous suspensions. Polym Eng Sci 49:2276–2285

    Article  CAS  Google Scholar 

  35. Chow WS, Ishak ZAM, Karger-Kocsis J (2005) Morphological and rheological properties of polyamide 6/poly(propylene)/organoclay nanocomposites. Macromol Mater Eng 290:122–127

    Article  CAS  Google Scholar 

  36. Wu DF, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ɛ-caprolactone) composites. J Polym Sci Part B Polym Phys 45:3137–3147

    Article  CAS  Google Scholar 

  37. Wu DF, Wu LF, Zhang M, Wu L (2007) Effect of epoxy resin on rheology of polycarbonate/clay nanocomposites. Eur Polym J 43:1635–1644

    Article  CAS  Google Scholar 

  38. Song YS (2006) Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites. Rheol Acta 46:231–238

    Article  CAS  Google Scholar 

  39. Brady JF (1993) The rheological behavior of concentrated colloidal dispersions. J Chem Phys 99:567–581

    Article  CAS  Google Scholar 

  40. Alig I, Potschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4–28

    Article  CAS  Google Scholar 

  41. Kagarise C, Xu JH, Wang YR, Mahboob M, Koelling KW, Bechtel SE (2010) Transient shear rheology of carbon nanofiber/polystyrene melt composites. J Non Newton Fluid Mech 165:98–109

    Article  CAS  Google Scholar 

  42. Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196

    Article  CAS  Google Scholar 

  43. Yziquel F, Carreau PJ, Moan M, Tanguy PA (1999) Rheological modeling of concentrated colloidal suspensions. J Non Newton Fluid Mech 86:133–155

    Article  CAS  Google Scholar 

  44. Huang X-Y, Huang H-X (2019) Viscoelastic behavior and constitutive modeling of PP/HNT composites prepared by water‐assisted extrusion. Polym Eng Sci 59(8):1585–1592

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the National Natural Science Foundation of China (21374033) and Guangdong Provincial Natural Science Foundation (2016A030308018) is gratefully acknowledged. Thanks also go to the anonymous reviewers for their extremely helpful and constructive comments and suggestions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Xiong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YX., Huang, HX. Rheological behavior of well-dispersed polypropylene/halloysite nanotube composites prepared by water-assisted mixing extrusion. Iran Polym J 28, 813–822 (2019). https://doi.org/10.1007/s13726-019-00742-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00742-2

Keywords

Navigation