Skip to main content

Advertisement

Log in

Adsorption of paraquat from water by insoluble cyclodextrin polymer crosslinked with 1,2,3,4-butanetetracarboxylic acid

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

An insoluble polymer was elaborated by crosslinking reaction between β-CD (β-cyclodextrin) and BTCA (1,2,3,4-butanetetracarboxylic acid) and it was firstly applied in adsorption of paraquat (PQ) from water. This insoluble polymer was synthesized at 180 °C for 30 min which displayed 74.1% of reaction yield, 3.80 mmol g− 1 of ion exchange capacity (IEC) and 0.18 mmol g− 1 of β-CD content. Physicochemical properties were evaluated by attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR), carbon-13 nuclear magnetic resonance (13C NMR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) method and stereoscopic microscopy. The optimal pH was 8 and the equilibrium time was 120 min. At 30 °C, the adsorption capacity was enhanced (10.8, 19.7, and 25.8 mg g− 1) when the initial concentration of paraquat was increased (25, 50 and 200 mg L− 1, respectively). Adsorption kinetics was described by the pseudo-second-order model and adsorption isotherm was appropriated to the Langmuir model. The negative standard enthalpy change (∆Hº) showed an exothermic process, the positive standard entropy change (∆Sº) displayed an increased disorder and the negative standard Gibbs free energy change (∆Gº) indicated a spontaneous adsorption method. Ultimately, the regeneration efficiency of polymer in methanol was 87.3% after four cycles. This polymer could be used as a potential adsorbent for removal of other cationic pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu G, Li L, Huang X, Zheng S, Xu X, Liu Z, Zhang Y, Wang J, Lin H, Xu D (2018) Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes organic framework ZIF-8. J Mater Sci 53:10772–10783

    Article  CAS  Google Scholar 

  2. Wei M, Yan X, Liu S, Liu Y (2018) Preparation and evaluation of superparamagnetic core–shell dummy molecularly imprinted polymer for recognition and extraction of organophosphorus pesticide. J Mater Sci 53:4897–4912

    Article  CAS  Google Scholar 

  3. Nanseu-Njiki CP, Dedzo GK, Ngameni E (2010) Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust. J Hazard Mater 179:63–71

    Article  CAS  PubMed  Google Scholar 

  4. Mhammedi MAE, Bakasse M, Chtaini A (2007) Electrochemical studies and square wave voltammetry of paraquat at natural phosphate modified carbon paste electrode. J Hazard Mater 145:1–7

    Article  CAS  PubMed  Google Scholar 

  5. Recena MCP, Caldas ED, Pires DX, Pontes ERJC (2006) Pesticides exposure in Culturama, Brazil–Knowledge, attitudes, and practices. Environ Res 102:230–236

    Article  CAS  PubMed  Google Scholar 

  6. Núñez O, Kim JB, Moyano E, Galceran MT, Terabe S (2002) Analysis of the herbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection. J Chromatogr A 961:65–75

    Article  PubMed  Google Scholar 

  7. Dinis-Oliveira RJ, Duarte JA, Sánchez-Navarro A, Remião F, Bastos ML, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 38:13–71

    Article  CAS  PubMed  Google Scholar 

  8. Brown R, Clapp M, Dyson J, Scott D, Wheals I, Wilks M (2004) Paraquat in perspective. Outlooks Pest Manag 15:259–267

    Article  Google Scholar 

  9. Smeyne RJ, Breckenridge CB, Beck M, Jiao Y, Butt MT, Wolf JC, Zadory D, Minnema DJ, Sturgess NC, Travis KZ, Cook AR, Smith LL, Botham PA (2016) Assessment of the effects of MPTP and paraquat on dopaminergic neurons and microglia in the substantia nigra pars compacta of C57BL/6 mice. PLoS One 11:e0164094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lacerda ACR, Rodrigues-Machado M, da G, Mendes, Novaes PL, Carvalho RD, Zin GMC, Gripp WA, Coimbra F CC (2009) Paraquat (PQ)-induced pulmonary fibrosis increases exercise metabolic cost, reducing aerobic performance in rats. J Toxicol Sci 34:671–679

    Article  PubMed  Google Scholar 

  11. Cho IK, Jeong M, You AS, Park KH, Li QX (2015) Pulmonary proteome and protein networks in response to the herbicide paraquat in rats. J Proteom Bioinform 8:067–079

    Google Scholar 

  12. Zhang X, Thompson M, Xu Y (2016) Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson’s disease. Lab Invest 96:496–507

    Article  CAS  PubMed  Google Scholar 

  13. Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson’s disease. NeuroToxicol 27:1110–1122

    Article  CAS  Google Scholar 

  14. Akhtar M, Hasany SM, Bhanger MI, Iqbal S (2007) Low cost sorbents for the removal of methyl parathion pesticide from aqueous solutions. Chemosphere 66:1829–1838

    Article  CAS  PubMed  Google Scholar 

  15. Carr RJ, Bilton RF, Atkinson T (1985) Mechanism of biodegradation of paraquat by Lipomyces starkeyi. Appl Environ Microbiol 49:1920–1924

    Google Scholar 

  16. Santos MSF, Schaule G, Alves A, Madeira LM (2013) Adsorption of paraquat herbicide on deposits from drinking water networks. Chem Eng J 229:324–333

    Article  CAS  Google Scholar 

  17. Burns IG, Hayes MHB, Stacey M (1973) Studies of the adsorption of paraquat on soluble humic fractions by gel filtration and ultrafiltration techniques. Pestic Sci 4:629–641

    Article  CAS  Google Scholar 

  18. Cocenza DS, de Moraes MA, Beppu MM, Fraceto LF (2012) Use of biopolymeric membranes for adsorption of paraquat herbicide from water. Water Air Soil Pollut 223:3093–3104

    Article  CAS  Google Scholar 

  19. Leite MP, dos Reis LGT, Robaina NF, Pacheco WF, Cassella RJ (2013) Adsorption of paraquat from aqueous medium by Amberlite XAD-2 and XAD-4 resins using dodecylsulfate as counter ion. Chem Eng J 215–216:691–698

    Article  CAS  Google Scholar 

  20. Humbert H, Gallard H, Suty H, Croué JP (2008) Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC). Water Res 42:1635–1643

    Article  CAS  PubMed  Google Scholar 

  21. Cantavenera MJ, Catanzaro I, Loddo V, Palmisano L, Sciandrello G (2007) Photocatalytic degradation of paraquat and genotoxicity of its intermediate products. J Photochem Photobiol Chem 185:277–282

    Article  CAS  Google Scholar 

  22. Sorolla MG, Dalida ML, Khemthong P, Grisdanurak N (2012) Photocatalytic degradation of paraquat using nano-sized Cu–TiO2/SBA-15 under UV and visible light. J Environ Sci 24:1125–1132

    Article  CAS  Google Scholar 

  23. Zayats MF, Leschev SM, Petrashkevich NV, Zayats MA, Kadenczki L, Szitás R, Dobrik HS, Keresztény N (2013) Distribution of pesticides in n-hexane/water and n-hexane/acetonitrile systems and estimation of possibilities of their extraction isolation and preconcentration from various matrices. Anal Chim Acta 774:33–43

    Article  CAS  PubMed  Google Scholar 

  24. Dhaouadi A, Adhoum N (2009) Degradation of paraquat herbicide by electrochemical advanced oxidation methods. J Electroanal Chem 637:33–42

    Article  CAS  Google Scholar 

  25. Santos MSF, Alves A, Madeira LM (2011) Paraquat removal from water by oxidation with Fenton’s reagent. Chem Eng J 175:279–290

    Article  CAS  Google Scholar 

  26. Dhaouadi A, Adhoum N (2010) Heterogeneous catalytic wet peroxide oxidation of paraquat in the presence of modified activated carbon. Appl Catal B Environ 97:227–235

    Article  CAS  Google Scholar 

  27. Lan S, Zhan S, Ding J, Ma J, Ma D (2017) Pillar[n]arene-based porous polymers for rapid pollutant removal from water. J Mater Chem A 5:2514–2518

    Article  CAS  Google Scholar 

  28. Tsai WT, Chen HR (2013) Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. Int J Environ Sci Technol 10:1349–1356

    Article  CAS  Google Scholar 

  29. Hamadi NK, Swaminathan S, Chen XD (2004) Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires. J Hazard Mater 112:133–141

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura T, Kawasaki N, Ogawa H, Tanada S, Kogirima M, Imaki M (1999) Adsorption removal of paraquat and diquat onto activated carbon at different adsorption temperature. Toxicol Environ Chem 70:275–280

    Article  CAS  Google Scholar 

  31. Tsai WT, Lai CW, Hsien KJ (2004) Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth. Chemosphere 55:829–837

    Article  CAS  PubMed  Google Scholar 

  32. Iglesias A, López R, Gondar D, Antelo J, Fiol S, Arce F (2010) Adsorption of paraquat on goethite and humic acid-coated goethite. J Hazard Mater 183:664–668

    Article  CAS  PubMed  Google Scholar 

  33. Brigante M, Zanini G, Avena M (2010) Effect of humic acids on the adsorption of paraquat by goethite. J Hazard Mater 184:241–247

    Article  CAS  PubMed  Google Scholar 

  34. Ait Sidhoum D, Socías-Viciana MM, Ureña-Amate MD, Derdour A, González-Pradas E, Debbagh-Boutarbouch N (2013) Removal of paraquat from water by an Algerian bentonite. Appl Clay Sci 83–84:441–448

    Article  CAS  Google Scholar 

  35. Hao Y, Wang Z, Gou J, Wang Z (2015) Kinetics and thermodynamics of diquat removal from water using magnetic graphene oxide nanocomposite. Can J Chem Eng 93:1713–1720

    Article  CAS  Google Scholar 

  36. Fernandes T, Soares SF, Trindade T, Daniel-da-Silva AL (2017) Magnetic hybrid nanosorbents for the uptake of paraquat from water. Nanomaterials 7:68

    Article  CAS  PubMed Central  Google Scholar 

  37. Rongchapo W, Keawkumay C, Osakoo N, Deekamwong K, Chanlek N, Prayoonpokarach S, Wittayakun J (2017) Comprehension of paraquat adsorption on faujasite zeolite X and Y in sodium form. Adsorpt Sci Technol 36:684–693

    Article  CAS  Google Scholar 

  38. Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog Polym Sci 38:344–368

    Article  CAS  Google Scholar 

  39. Leudjo Taka A, Pillay K, Yangkou Mbianda X (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydr Polym 159:94–107

    Article  CAS  PubMed  Google Scholar 

  40. Shirsath N, Raghuvanshi D, Patil C, Gite V, Meshram J (2018) Biocomposite formation using β-cyclodextrin as a biomaterial in poly(acrylamide-co-acrylic acid): preparation, characterization, and salinity profile. Iran Polym J 27:217–224

    Article  CAS  Google Scholar 

  41. He C, Zhou Q, Duan Z, Xu X, Wang F, Li H (2018) One-step synthesis of a β-cyclodextrin derivative and its performance for the removal of Pb(II) from aqueous solutions. Res Chem Intermed 44:2983–2998

    Article  CAS  Google Scholar 

  42. Mahlambi MM, Malefetse TJ, Mamba BB, Krause RW (2010) β-cyclodextrin-ionic liquid polyurethanes for the removal of organic pollutants and heavy metals from water: synthesis and characterization. J Polym Res 17:589–600

    Article  CAS  Google Scholar 

  43. Chen S, Guo H, Yang F, Di X (2016) Cyclodextrin-grafted thiacalix [4]arene netty polymer based on the click chemistry: preparation and efficient adsorption for organic dyes. J Polym Res 23:28

    Article  CAS  Google Scholar 

  44. Ye H, Zhang X, Zhao Z, Song B, Zhang Z, Song W (2017) Pervaporation performance of surface-modified zeolite/PU mixed matrix membranes for separation of phenol from water. Iran Polym J 26:193–203

    Article  CAS  Google Scholar 

  45. Shang S, Chiu KL, Jiang S (2017) Synthesis of immobilized poly(vinyl alcohol)/cyclodextrin eco-adsorbent and its application for the removal of ibuprofen from pharmaceutical sewage. J Appl Polym Sci 134:44861

    Google Scholar 

  46. Liu H, Cai X, Wang Y, Chen J (2011) Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res 45:3499–3511

    Article  CAS  PubMed  Google Scholar 

  47. Garrido EM, Rodrigues D, Milhazes N, Borges F, Garrido J (2017) Molecular encapsulation of herbicide terbuthylazine in native and modified β-cyclodextrin. J Chem 2017:1–9

    Article  CAS  Google Scholar 

  48. Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292:2025–2052

    Article  CAS  Google Scholar 

  49. Celebioglu A, Yildiz ZI, Uyar T (2017) Electrospun crosslinked poly-cyclodextrin nanofibers: highly efficient molecular filtration thru host-guest inclusion complexation. Sci Rep 7:7369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martel B, Ruffin D, Weltrowski M, Lekchiri Y, Morcellet M (2005) Water-soluble polymers and gels from the polycondensation between cyclodextrins and poly(carboxylic acid)s: a study of the preparation parameters. J Appl Polym Sci 97:433–442

    Article  CAS  Google Scholar 

  51. Ducoroy L, Martel B, Bacquet M, Morcellet M (2007) Ion exchange textiles from the finishing of PET fabrics with cyclodextrins and citric acid for the sorption of metallic cations in water. J Incl Phenom Macrocycl Chem 57:271–277

    Article  CAS  Google Scholar 

  52. Euvrard É, Morin-sCrini N, Druart C, Bugnet J, Martel B, Cosentino C, Moutarlier V, Crini G (2016) Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein J Org Chem 12:1826–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsai WT, Hsien KJ, Chang YM, Lo CC (2005) Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresour Technol 96:657–663

    Article  CAS  PubMed  Google Scholar 

  54. Brigante M, Schulz PC (2011) Adsorption of paraquat on mesoporous silica modified with titania: effects of pH, ionic strength and temperature. J Colloid Interface Sci 363:355–361

    Article  CAS  PubMed  Google Scholar 

  55. Draoui K, Denoyel R, Chgoura M, Rouquerol J (1999) Adsorption of paraquat on minerals: a thermodynamic study. J Therm Anal Calorim 58:597–606

    Article  CAS  Google Scholar 

  56. Zhao F, Repo E, Yin D, Meng Y, Jafari S, Sillanpää M (2015) EDTA-cross-linked β-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environ Sci Technol 49:10570–10580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank technical staffs for kindly support to achieve experiments. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatupol Junthip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junthip, J., Promma, W., Sonsupap, S. et al. Adsorption of paraquat from water by insoluble cyclodextrin polymer crosslinked with 1,2,3,4-butanetetracarboxylic acid. Iran Polym J 28, 213–223 (2019). https://doi.org/10.1007/s13726-019-00692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00692-9

Keywords

Navigation