Skip to main content
Log in

Maleated polyethylene as a compatibilizing agent in cannabis indica stem’s flour-reinforced composite materials

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Ethylene propylene diene terpolymer (EPDM) composites reinforced with wood flour of White Russian indica cannabis (ICF), a variety of marijuana obtained from government-licensed crops, were prepared. Wide particle size distribution range (136–1580 µm) of ICF was used. The wood flour was superficially treated with sodium hydroxide, and subsequently washed and dried. Composites with 30 and 60 parts of ICF by weight per hundred of rubber (phr) were prepared. Maleated polyethylene (MAPE) was used as a compatibilizer/coupling agent. The rubber compounds were mixed on a laboratory two-roll mill and cured composite sheets were obtained using compression molding technique. The effects of ICF and MAPE on the mechanical and physical properties of composites were analyzed. The addition of MAPE had positive effects on tensile strength, abrasion resistance, tear strength and compression set. The compatibilizing agent also had a slight effect on the hardness. The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) results confirmed that MAPE improved the interfacial adhesion between the ICF particle and EPDM matrix. ICF and MAPE slightly affected the crystallinity, characterized using X-ray diffraction microscopy, and curing behavior of the composites. Lightweight (ρ = 0.92 g/cm3) composites were obtained with load levels up to 60 phr of ICF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wisittanawat U, Thanawan S, Amornsakchai T (2014) Mechanical properties of highly aligned short pineapple leaf fiber reinforced - nitrile rubber composite: effect of fiber content and bonding agent. Polym Test 35:20–27

    Article  CAS  Google Scholar 

  2. Chow WS, Bakar AA, Mohd Ishak ZA, Kocsis JK, Ishiaku US (2005) Effect of maleic anhydride-grafted ethylene–propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites. Eur Polym J 41:687–696

    Article  CAS  Google Scholar 

  3. Pang AL, Ismail H, Abu Bakar A (2018) Eco-friendly coupling agent-treated kenaf/linear low-density polyethylene/poly (vinyl alcohol) composites. Iran Polym J 27:87–96

    Article  Google Scholar 

  4. Bhoopathia R, Ramesha M, Deepab C (2014) Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites. Procedia Eng 97:2032–2041

    Article  CAS  Google Scholar 

  5. Santiagoo R, Ismail H, Hussin K (2011) Mechanical properties, water absorption, and swelling behaviour of rice husk powder filled polypropylene/ recycled acrylonitrile butadiene rubber PP/NBRR/RHP) biocomposites using silane as a coupling agent. BioResources 6:3714–3726

    CAS  Google Scholar 

  6. Elanchezhian C, Ramnath B, Ramakrishnan G, Rajendrakumar M, Naveenkumar V, Saravanakumar MK (2018) Review on mechanical properties of natural fiber composites. Mater Today Proc 5:1785–1790

    Article  Google Scholar 

  7. Stelescu MD, Manaila E, Craciun G, Dumitrascu M (2014) New green polymeric composites based on hemp and natural rubber processed by electron beam irradiation. Sci World J. https://doi.org/10.1155/2014/684047

    Article  Google Scholar 

  8. Wang J, Wu W, Wang W, Zhang J (2011) Preparation and characterization of hemp hurd powder filled SBR and EPDM elastomers. J Polym Res 18:1023–1032

    Article  CAS  Google Scholar 

  9. López M, Arroyo M, Biagiotti J, Kenny J (2003) Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer. J Appl Polym Sci 90:2170–2178

    Article  CAS  Google Scholar 

  10. Lavoie JM, Beauchet R (2012) Biorefinery of Cannabis sativa using one- and two-step steam treatments for the production of high quality fibres. Ind Crops Prod 37:275:283

    Article  CAS  Google Scholar 

  11. Salentijn EMJ, Zhang Q, Amaducci S, Yang M, Trindade LM (2015) New developments in fiber hemp (Cannabis sativa L.) breeding. Ind Crops Prod 68:32–41

    Article  Google Scholar 

  12. Vukčević MM, Kalijadis AM, Vasiljević TM, Babić BM, Laušević ZV, Laušević MD (2015) Production of activated carbon derived from waste hemp (Cannabis sativa) fibers and its performance in pesticide adsorption. Microporous Mesoporous Mater 214:156–165

    Article  CAS  Google Scholar 

  13. Rovetto LJ, Aieta NV (2017) Supercritical carbon dioxide extraction of cannabinoids from Cannabis sativa L. J Supercrit Fluids 129:16–27

    Article  CAS  Google Scholar 

  14. Aiello G, Fasoli E, Boschin G, Lammi C, Zanoni C, Citterio A, Arnoldi A (2016) Proteomic characterization of hempseed (Cannabis sativa L.). J Proteom 147:187–196

    Article  CAS  Google Scholar 

  15. Sawler J, Stout JM, Gardner KM, Hudson D, Vidmar J, Butler L, Page J, Myles S (2015) The genetic structure of marijuana and hemp. PLoS One 10(8):e0133292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A 41:806–819

    Article  CAS  Google Scholar 

  17. Tran TPT, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124

    Article  CAS  Google Scholar 

  18. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  CAS  Google Scholar 

  19. Pires E, Merlini C, Al-Qureshi HA, Salmória GV, Barra GM (2012) Efeito do tratamento alcalino de fibras de juta no comportamentomecânico de compósitos de matriz epóxi. Polímeros. https://doi.org/10.1590/S0104-14282012005000053

    Article  CAS  Google Scholar 

  20. Sullins T, Pillay S, Komus A, Ning H (2017) Hemp fiber reinforced polypropylene composites: the effects of material treatments. Compos Part B 114:15–22

    Article  CAS  Google Scholar 

  21. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B 43:2883:2892

    Google Scholar 

  22. Onuegbu GC, Madufor IC, Ogbobe O (2012) Studies on effect of maleated polyethylene compatibilizer on some mechanical properties of kola nut filled low density polyethylene. Acad Res Int 3:406–412

    Google Scholar 

  23. Lu JZ, Negulescu II, Wu Q (2005) Maleated wood-fiber/high-density-polyethylene composites: coupling mechanisms and interfacial characterization. Compos Interface 12:125–140

    Article  CAS  Google Scholar 

  24. Riyaz M, Desai R (2013) To study the blends of EPDM rubber with LDPE. Int J Res Eng Tech 2:555–558

    Google Scholar 

  25. Ehsani M, Zeynali M, Abtahi M, Harati A (2009) LDPE/EPDM blends as electrical insulators with unique surface, electrical and mechanical properties. Iran Polym J 18:37–47

    CAS  Google Scholar 

  26. Abitha V, Rane A (2014) A review on EPDM/polyolefinic blends and composites. Res Rev Polym 5:102–114

    Google Scholar 

  27. Sarkhel G, Choudhury A (2008) Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites. J Appl Polym Sci 108:3442–3453

    Article  CAS  Google Scholar 

  28. Araujo JR, Adamo CB, Rocha W, Costa M, Carozo V, Calil V, De Paoli M (2014) Elastomer composite based on epdm reinforced with polyaniline coated curauá fibers prepared by mechanical mixing. J Appl Polym Sci 131:40056

    Article  CAS  Google Scholar 

  29. Palacio O, Buitrago OY, Delgado AE (2016) Evaluación de polietileno maleatado en compuestos de etil vinil acetato y harina telinne monspessulana. Inf Technol 27:139–146

    Google Scholar 

  30. Neher B, Gafur M, Al-Mansur M, Bhuiyan M, Qadir M, Ahmed F (2014) Investigation of the surface morphology and structural characterization of palm fiber reinforced acrylonitrile butadiene styrene (PF-ABS) composites. Mater Sci Appl 5:378–386

    Google Scholar 

  31. Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mater Sci 78–79:1–92

    Article  CAS  Google Scholar 

  32. Li TQ, Wolcott MP (2005) Rheology of wood plastics melt. Part 1. capillary rheometry of HDPE filled with MAPLE. Polym Eng Sci 45:549–559

    Article  CAS  Google Scholar 

  33. Sobhy MS, Tammam MT (2010) the influence of fiber length and concentration on the physical properties of wheat husk fibers rubber composites. Int J Polym Sci. https://doi.org/10.1155/2010/528173

    Article  Google Scholar 

  34. Craciun G, Manaila E, Stelescu M, Vasilescu A (2015) Characteristics of wood sawdust/natural rubber composites processed by electron beam irradiation. Mater Plast 52:234–238

    Google Scholar 

  35. Anand GS, Jayamohan KG (2016) Synthesis of rice straw fiber reinforced natural rubber composite and effects surface treatment in its mechanical properties. Int J Adv Eng Res Sci 3:82–89

    Google Scholar 

  36. Tabsan N, Wirasate S, Suchiva K (2010) Abrasion behavior of layered silicate reinforced natural rubber. Wear 269:394:404

    Article  CAS  Google Scholar 

  37. Shen L, Xia L, Han T, Wu H, Guo S (2016) Improvement of hardness and compression set properties of EPDM seals with alternating multilayered structure for PEM fuel cells. Int J Hydrog Energy 41:23164–23172

    Article  CAS  Google Scholar 

  38. Planes E, Chazeau L, Vigier G, Chenal J-M, Stuhldreier T (2010) Crystalline microstructure and mechanical properties of crosslinked EPDM aged under gamma irradiation. J Polym Sci B Polym Phys 48:97–105

    Article  CAS  Google Scholar 

  39. Chakraborty S, Sahoo N, Jana G, Das C (2004) Self-reinforcing elastomer composites based on ethylene–propylene–diene monomer rubber and liquid-crystalline polymer. J Appl Polym Sci 93:711–718

    Article  CAS  Google Scholar 

  40. Furukawa T, Sato H, Kita Y, Matsukawa K, Yamaguchi H, Ochiai S, Siesler H, Ozaki Y (2006) Molecular structure, crystallinity and morphology of polyethylene/polypropylene blends studied by raman mapping, scanning electron microscopy, wide angle X-ray diffraction, and differential scanning calorimetry. Polym J 38:1127–1136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is the product of the INV-ING-2385 Project funded by the Vice-Rectory of Research at Universidad Militar Nueva Granada—in effect for 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Buitrago-Suescún.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buitrago-Suescún, O., Monroy, M. Maleated polyethylene as a compatibilizing agent in cannabis indica stem’s flour-reinforced composite materials. Iran Polym J 27, 819–827 (2018). https://doi.org/10.1007/s13726-018-0656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0656-z

Keywords

Navigation