Iranian Polymer Journal

, Volume 27, Issue 5, pp 339–347 | Cite as

Aluminum oxide particles/silicon carbide whiskers’ synergistic effect on thermal conductivity of high-density polyethylene composites

  • Jiaming Fan
  • Shiai Xu
Original Research


Aluminum oxide (Al2O3) particles and silicon carbide (SiC) whiskers improved the thermal conductivity of high-density polyethylene (HDPE). To improve the dispersion of inorganic fillers in the matrix, 5 wt% of maleic anhydride-modified polyethylene was added into HDPE as a compatibilizer, and the hybrid matrix was denoted as mHDPE. The thermal conductivity, heat resistance, and tensile properties of resulting HDPE composites were characterized. The results showed that the thermal conductivity reached its maximum value of 0.8876 W/(m K) at 1/4 weight ratio of Al2O3/SiC, which was 110.3, 54.8, and 8.8% higher than that of pure HDPE, mHDPE/Al2O3, and mHDPE/SiC composites, in the order given, indicating that hybrid fillers have synergistic effect on the thermal conductivity of HDPE composites. Moreover, they also have a synergistic effect on the heat resistance and Young’s modulus. As the SiC content increases, the heat resistance of the composites increases at first and then falls, and the maximum VST is reached at an Al2O3/SiC weight ratio of 3/2, which is 5.4 °C higher than that of HDPE. The maximum Young’s modulus of the composites (1160 MPa) is obtained at an Al2O3/SiC weight ratio of 1/4, and the yield strength increases gradually as the SiC whiskers’ content increases.


Polyethylene composites Thermal conductivity Aluminum oxide Silicon carbide Synergistic effect 



This research is financially sponsored by the National Nature Science Foundation of China (U1507123), the Foundation of Qinghai Science and Technology Department (2017-HZ-803), Thousand Talents Program of Qinghai Province, and Kunlun Scholar Award Program of Qinghai Province.


  1. 1.
    Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRefGoogle Scholar
  2. 2.
    Yu GC, Wu LZ, Feng LJ, Yang W (2016) Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway. Compos Struct 149:213–219CrossRefGoogle Scholar
  3. 3.
    Karim MR, Lee CJ, Mu SL (2010) Synthesis and characterization of conducting polyaniline-activated carbon nanocomposites. J Appl Polym Sci 103:1973–1977CrossRefGoogle Scholar
  4. 4.
    Chen C, Wang H, Xue Y, Xue Z, Liu H, Xie X, Mai YW (2016) Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites. Compos Sci Technol 128:207–214CrossRefGoogle Scholar
  5. 5.
    Carlberg B, Ye LL, Liu J (2012) Polymer-metal nanofibrous composite for thermal management of microsystems. Mater Lett 75:229–232CrossRefGoogle Scholar
  6. 6.
    Yu S, Lee JW, Han TH, Park C, Kwon Y, Hong SM, Koo CM (2013) Copper shell networks in polymer composites for efficient thermal conduction. ACS Appl Mater Interfaces 5:11618–11622CrossRefGoogle Scholar
  7. 7.
    Krupa I, Boudenne A, Ibos L (2007) Thermophysical properties of polyethylene filled with metal coated polyamide particles. Eur Polym J 43:2443–2452CrossRefGoogle Scholar
  8. 8.
    Pan Y, Liu X, Hao X, Starý Z, Schubert DW (2016) Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology. Eur Polym J 78:106–115CrossRefGoogle Scholar
  9. 9.
    Zhou S, Chen Y, Zou H, Liang M (2013) Thermally conductive composites obtained by flake graphite filling immiscible polyamide 6/polycarbonate blends. Thermochim Acta 566:84–91CrossRefGoogle Scholar
  10. 10.
    Park HJ, Badakhsh A, Im IT, Kim MS, Park CW (2016) Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Appl Therm Eng 107:907–917CrossRefGoogle Scholar
  11. 11.
    Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ (2013) Thermal conductivity of polymeric composites: a review. In: IEEE ICSD, p 678–681Google Scholar
  12. 12.
    Kozako M, Okazaki Y, Hikita M, Tanaka T(2010)Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity. In: IEEE International Conference on Solid Dielectrics, p 1–4Google Scholar
  13. 13.
    Li B, Li R, Xie Y (2017) Properties and effect of preparation method of thermally conductive polypropylene/aluminum oxide composite. J Mater Sci 52:2524–2533CrossRefGoogle Scholar
  14. 14.
    Efimov VB, Makova MK, Mezhovdeglin LP (1977) Thermal conductivity of organic superconductors. In: International conference on materials and mechanisms of superconductivity, p 1903–1904Google Scholar
  15. 15.
    Gu J, Guo Y, Lv Z, Geng W, Zhang Q (2015) Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Compos A 78:95–101CrossRefGoogle Scholar
  16. 16.
    Hu M, Feng J, Ng KM (2015) Thermally conductive PP/AlN composites with a 3-D segregated structure. Compos Sci Technol 110:26–34CrossRefGoogle Scholar
  17. 17.
    Kim K, Yoo M, Ahn K, Kim J (2015) Thermal and mechanical properties of AlN/BN-filled PVDF composite for solar cell backsheet application. Ceram Int 41:179–187CrossRefGoogle Scholar
  18. 18.
    Kusunose T, Yagi T, Firoz SH, Sekino T (2013) Fabrication of epoxy/silicon nitride nanowire composites and evaluation of their thermal conductivity. J Mater Chem A1:3440–3445CrossRefGoogle Scholar
  19. 19.
    Ramdani N, Derradji M, Feng TT, Tong Z, Wang J, Mokhnache EO, Liu WB (2015) Preparation and characterization of thermally-conductive silane-treated silicon nitride filled polybenzoxazine nanocomposites. Mater Lett 155:34–37CrossRefGoogle Scholar
  20. 20.
    Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H (2009) A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos A 40:830–836CrossRefGoogle Scholar
  21. 21.
    Song WL, Wang P, Cao L, Anderson A, Meziani MJ, Farr AJ, Sun YP (2012) Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed 51:6498–6501CrossRefGoogle Scholar
  22. 22.
    Muratov DS, Kuznetsov DV, Il’inykh IA, Burmistrov IN, Mazov IN (2015) Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Compos Sci Technol 111:40–43CrossRefGoogle Scholar
  23. 23.
    Xiao YJ, Wang WY, Chen XJ, Lin T, Zhang YT, Yang JH, Wang Y, Zhou ZW (2016) Hybrid network structure and thermal conductive properties in poly(vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Compos A 90:614–625CrossRefGoogle Scholar
  24. 24.
    Lee GW, Park M, Kim J, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos A 37:727–734CrossRefGoogle Scholar
  25. 25.
    Fu J, Shi L, Zhang D, Zhong Q, Chen Y (2010) Effect of nanoparticles on the performance of thermally conductive epoxy adhesives. Polym Eng Sci 50:1809–1819CrossRefGoogle Scholar
  26. 26.
    Teng CC, Ma CCM, Chiou KC, Lee TM, Shih YF (2011) Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater Chem Phys 126:722–728CrossRefGoogle Scholar
  27. 27.
    Zhou T, Wang X, Liu X, Xiong D (2010) Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon 48:1171–1176CrossRefGoogle Scholar
  28. 28.
    Xu Y, Chung DDL, Mroz C (2001) Thermally conducting aluminum nitride polymer-matrix composites. Compos A 32:1749–1757CrossRefGoogle Scholar
  29. 29.
    Yuan FY, Zhang HB, Li X, Li XZ, Yu ZZ (2013) Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos A 53:137–144CrossRefGoogle Scholar
  30. 30.
    Chen CH, Jian JY, Yen FS (2009) Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Compos A 40:463–468CrossRefGoogle Scholar
  31. 31.
    Zhou T, Wang X, Mingyuan GU, Liu X (2008) Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites. Polymer 49:4666–4672CrossRefGoogle Scholar
  32. 32.
    Fu JF, Shi LY, Zhong QD, Chen Y, Chen LY (2011) Thermally conductive and electrically insulative nanocomposites based on hyperbranched epoxy and nano-Al2O3 particles modified epoxy resin. Polym Adv Technol 22:1032–1041CrossRefGoogle Scholar
  33. 33.
    Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 430:155–165CrossRefGoogle Scholar
  34. 34.
    Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, BerlinGoogle Scholar
  35. 35.
    Choy CL, Fei Y, Xi TG (2010) Thermal conductivity of gel-spun polyethylene fibers. J Polym Sci 31:365–370CrossRefGoogle Scholar
  36. 36.
    Kurabayashi K (2001) Anisotropic thermal properties of solid polymers. Int J Thermophys 22:277–288CrossRefGoogle Scholar
  37. 37.
    Li L, Chung DDL (1994) Thermally conducting polymer-matrix composites containing both AIN particles and SiC whiskers. J Electron Mater 23:557–564CrossRefGoogle Scholar
  38. 38.
    Zhou W, Yu D, Min C, Fu Y, Guo X (2009) Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. J Appl Polym Sci 112:1695–1703CrossRefGoogle Scholar
  39. 39.
    Li M, Wan Y, Gao Z, Xiong G, Wang X, Wan C, Luo H (2013) Preparation and properties of polyamide 6 thermal conductive composites reinforced with fibers. Mater Des 51:257–261CrossRefGoogle Scholar
  40. 40.
    Wang L, Sheng J (2005) Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer 46:6243–6249CrossRefGoogle Scholar
  41. 41.
    Yang L, Sun D, Li Y, Liu G, Gao J (2010) Properties of poly(vinyl chloride) blended with an emulsion copolymer of N-cyclohexylmaleimide and methyl methacrylate. J Appl Polym Sci 88:201–205CrossRefGoogle Scholar
  42. 42.
    Yuan W, Cui J, Xu S (2016) Mechanical properties and interfacial interaction of modified calcium sulfate whisker/poly(vinyl chloride) composites. J Mater Sci Technol 32:1352–1360CrossRefGoogle Scholar
  43. 43.
    Wang KT, He Y, Song XL, Cui XM (2015) Effects of the metakaolin-based geopolymer on high-temperature performances of geopolymer/PVC composite materials. Appl Clay Sci 114:586–592CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringQinghai UniversityXiningChina
  2. 2.School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations