Skip to main content
Log in

Ring-opening polymerization of l-lactide catalyzed by a novel molybdenum-based catalytic system

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

As a transparent material that can be completely biodegradable, poly(l-lactide) (PL-LA) has recently received considerable attention. In this study, it our first efforts to fabricate l-lactide (L-LA) by a novel molybdenum-based catalytic system consisting of molybdenum pentachloride (MoCl5) as the main catalyst and m-cresol substituted alkyl aluminum Al(OPhCH3)(i-Bu)2 as the co-catalyst. The effects of different types of phosphorus ligands, Al:Mo molar ratios, catalyst contents,catalyst components (separate catalysis of m-cresol aluminum and cocatalysis of Al/Mo system) and polymerization temperature were investigated. The Tg and Tm of the resulting poly(l-lactide) (PL-LA) were characterized by differential scanning calorimetry (DSC), and the molecular weight and molecular weight distribution were determined by gel permeation chromatography (GPC). The GPC results showed that the molecular weight of the PL-LA was higher than that 104 g/mol and the molecular weight distribution was narrow. The structures of PL-LA was detected by 1H NMR spectroscopy (1H NMR) and X-ray diffraction (XRD) validation, which demonstrated that a moalr ratio of Mo/Al/l-lactide = 1:30:1000 showed the higher conversion rate and molecular weight. In comparison to the separate catalysis of m-cresol aluminum, the molecular weight of PL-LA prepared by the cocatalysis of Al/Mo system was slightly improved, and the molecular chains were relatively regular and the crystallinity was higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Von Schenck H, Ryner M, Albertsson A-C, Svensson M (2002) Ring-opening polymerization of lactones and lactides with Sn(IV) and Al(III) initiators. Macromolecules 35:1556–1562

    Article  Google Scholar 

  2. Liu K, Lv QQ, Hua J (2017) Study on damping properties of HVBR/EVM blends prepared by in situ polymerization. Polym Test 60:321–325

    Article  CAS  Google Scholar 

  3. Zhao W, Wang Y, Liu X, Chen X, Cui D (2012) Synthesis of isotactic-heterotactic stereo block (hard-soft) poly(lactide) with tacticity control through immortal coordination polymerization. Chem Asian J 7:2403–2410

    Article  CAS  Google Scholar 

  4. Ma H, Okuda J (2005) Kinetics and mechanism of l-lactide polymerization by rare earth metal silylamido complexes: effect of alcohol addition. Macromolecules 38:2665–2673

    Article  CAS  Google Scholar 

  5. Deng XM, Yuan ML, Xiong CD, Li XH (1999) Polymerization of lactides and lactones. II. Ring-opening polymerization of ε-caprolactone and DL-lactide by organoacid rare earth compounds. J Appl Polym Sci 71:1941–1948

    Article  CAS  Google Scholar 

  6. Li W, Zhang Z, Yao Y, Zhang Y, Shen Q (2012) control of conformations of piperazidine-bridged bis(phenolato) groups: syntheses and structures of bimetallic and monometallic lanthanide amides and their application in the polymerization of lactides. Organometallics 31:3499–3511

    Article  CAS  Google Scholar 

  7. Long P, Huang X, Jing L, Wu Y, Zheng N (2000) Novel single and double-layer and three-dimensional structures of rare-earth metal coordination polymers: the effect of lanthanide contraction and acidity control in crystal structure formation. Angew Chem Int Ed 39:527–530

    Article  Google Scholar 

  8. Zhang J, Qiu J, Yao Y, Zhang Y, Wang Y, Shen Q (2012) Synthesis and characterization of lanthanide amides bearing aminophenoxy ligands and their catalytic activity for the polymerization of lactides. Organometallics 31:3138–3148

    Article  CAS  Google Scholar 

  9. Liu J, Ling J, Li X, Shen Z (2009) Monomer insertion mechanism of ring-opening polymerization of ɛ-caprolactone with yttrium alkoxide intermediate: a DFT study. J Mol Catal A: Chem 300:59–64

    Article  CAS  Google Scholar 

  10. Amgoune A, Thomas C, Carpentier J (2009) Controlled ring-opening polymerization of lactide by group 3 metal complexes. Pure Appl Chem 79:2013–2030

    Article  Google Scholar 

  11. Sauer A, Kapelski A, Fliedel C, Dagorne S, Kol M, Okuda J (2013) Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers. Dalton Trans 42:9007–9023

    Article  CAS  Google Scholar 

  12. Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102:2357–2368

    Article  CAS  Google Scholar 

  13. Zhang M, Ni X, Shen Z (2014) Synthesis of bimetallic bis(phenolate) N-heterocyclic carbene lanthanide complexes and their applications in the ring-opening polymerization of l-lactide. Organometallics 33:6861–6867

    Article  CAS  Google Scholar 

  14. Alhashmialameer D, Ikpo N, Collins J, Dawe LN, Hattenhauer K, Kerton FM (2015) Ring-opening polymerization of rac-lactide mediated by tetrametallic lithium and sodium diamino-bis(phenolate) complexes. Dalton Trans 44:20216–20231

    Article  CAS  Google Scholar 

  15. Wang L, Roşca SC, Poirier V, Sinbandhit S, Dorcet V, Roisnel T, Carpentier JF, Sarazin Y (2014) Stable divalent germanium, tin and lead amino(ether)-phenolate monomeric complexes: structural features, inclusion heterobimetallic complexes, and ROP catalysis. Dalton Trans 43:4268–4286

    Article  CAS  Google Scholar 

  16. Dı́az E, Valenciano R, Landa P, Arana JL, González J (2002) Viscometric study of complexes of poly(vinyl pyrrolidone) with Co2+. Polym Test 21:247–251

    Article  Google Scholar 

  17. Ahuja R, Kundu S, Goldman AS, Brookhart Vicente BC, Scott SL (2008) Catalytic ring expansion, contraction, and metathesis-polymerization of cycloalkanes. Chem Commun 2:253–255

    Article  Google Scholar 

  18. Cotton FA, Frenz BA (1974) Conformation of fused cycloalkanes in organometallic complexes. II. The structure of bis(tricyclo[6.3.0.0 2,7]undeca-3,5-diene)dicarbonylmolybdenum, (C11H14)2 Mo(CO)2. Acta Cryst B30:1772–1776

    Article  Google Scholar 

  19. Tian W, Xu H, Tian J, Xu L, Hua J (2009) Synthesis of high vinyl polybutadiene rubber catalyzed by MoCl5/tributyl phosphate/Al(OPhCH3)(i-Bu)2. Chin Synth Rub Ind 32:75

    CAS  Google Scholar 

  20. Malcolmson SJ, Meek SJ, Sattely ES, Schrock RR, Hoveyda AH (2008) Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis. Nature 456:933–937

    Article  CAS  Google Scholar 

  21. Maruta Y, Abiko A (2014) Random copolymerization of ε-caprolactone and l-lactide with molybdenum complexes. Polym Bull 71:989–999

    Article  CAS  Google Scholar 

  22. Geng J, Sun Y, Hua J (2016) 1,2- and 3,4-rich polyisoprene synthesized by Mo(VI)-based catalyst with phosphorus ligand. Polym Sci Ser B 58:495–502

    Article  CAS  Google Scholar 

  23. Tian W, Tian J, Geng J, Hua J, Xu L (2009) Effect of tributyl phosphate on molybdenum-based catalyst system catalyzed polymerization of butadiene. Chin Synth Rub Ind 32:196–200

    CAS  Google Scholar 

  24. Düz B, Elbistan CK, Ece A, Sevin F (2009) Application of carbon arc-generated Mo- and W-based catalyst systems to the ROMP of norbornene. Appl Organometal Chem 23:359–364

    Article  Google Scholar 

  25. Hua J, Li X, Li Y-S, Xu L, Li Y-X (2007) Atom transfer radical polymerization of butadiene using MoO2Cl2/PPh3 as the catalyst. J Appl Polym Sci 104:3517–3522

    Article  CAS  Google Scholar 

  26. Dawans F, Teyssie P (1969) Process and catalytic compositions for obtaining amorphous 1,2-Polybutadiene and the products thereof. US patent 3,451,987A

  27. Chow WS, Lok SK (2009) Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim 95:627–632

    Article  CAS  Google Scholar 

  28. Ji YY, Kim Y, Ko YS (2013) Ring-opening polymerization behavior of l -lactide catalyzed by aluminum alkyl catalysts. J Ind Eng Chem 19:1137–1143

    Article  Google Scholar 

  29. Naga N, Mizunuma K (1998) Chain transfer reaction by trialkylaluminum(AIR3) in the stereospecific polymerization of propylene with metallocene-AIR3/Ph3CB(C6F5)4. Polymer 39:5059–5067

    Article  CAS  Google Scholar 

  30. Kretschmer WP, Meetsma A, Hessen B, Schmalz T, Qayyum S, Kempe R (2006) Reversible chain transfer between organoyttrium cations and aluminum: synthesis of aluminum-terminated polyethylene with extremely narrow molecular-weight distribution. Chem Eur J 12:8969–8978

    Article  CAS  Google Scholar 

  31. Furukawa T, Sato H, Murakami R, Zhang J, Duan Y-X, Noda I, Ochiai S, Ozaki Y (2005) Structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(l-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry. Macromolecules 38:6445–6454

    Article  CAS  Google Scholar 

  32. Vogel C, Hoffmann GG, Siesler HW (2009) Rheo-optical FT-IR spectroscopy of poly(3-hydroxybutyrate)/poly(lactic acid) blend films. Vib Spectrosc 49:284–287

    Article  CAS  Google Scholar 

  33. Vogel C, Wessel E, Siesler HW (2008) FT-IR spectroscopic imaging of anisotropic poly(3-hydroxybutyrate)/poly(lactic acid) blends with polarized radiation. Macromolecules 41:2975–2977

    Article  CAS  Google Scholar 

  34. Koval’Aková M, Olčák D, Hronský V, Vrábel P, Fričová O, Chodák I, Alexy P, Sučik G (2016) Morphology and molecular mobility of plasticized polylactic acid studied using solidstate 13C- and 1H-NMR spectroscopy. J Appl Polym Sci 133:43517. https://doi.org/10.1002/app.43517

    Google Scholar 

  35. Espartero JL, Rashkov I, Li SM, Manolova N, Vert M (1996) NMR analysis of low molecular weight poly(lactic acid)s. Macromolecules 29:3535–3539

    Article  CAS  Google Scholar 

  36. Nyce GW, Glauser T, Connor EF, Möck A, Waymouth RW, Hedrick JL (2003) In situ generation of carbenes: a general and versatile platform for organocatalytic living polymerization. J Am Chem Soc 125:3046–3056

    Article  CAS  Google Scholar 

  37. Pan P, Liang Z, Zhu B, Dong T, Inoue Y (2009) Blending effects on polymorphic crystallization of poly(l-lactide). Macromolecules 42:3374–3380

    Article  CAS  Google Scholar 

  38. Silverajah VS, Ibrahim NA, Zainuddin N, Yunus WM, Hassan HA (2012) Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecules 17:11729–11747

    Article  CAS  Google Scholar 

  39. Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules 40:6898–6905

    Article  CAS  Google Scholar 

  40. Huh KM, Bae YH (1999) Synthesis and characterization of poly(ethylene glycol)/poly(l-lactic acid) alternating multiblock copolymers. Polymer 40:6147–6155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The work is supported by the Natural Science Foundation of Shandong Province, China (no. ZR 2016 EMM03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, J., Lv, Q., Wang, Z. et al. Ring-opening polymerization of l-lactide catalyzed by a novel molybdenum-based catalytic system. Iran Polym J 27, 319–327 (2018). https://doi.org/10.1007/s13726-018-0612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0612-y

Keywords

Navigation