Skip to main content
Log in

Preparation of multi-responsive amphiphilic particles by one-step soapless emulsion polymerization

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A novel multi-responsive amphiphilic copolymer (mRAP) particles with tunable emulsifiability was successfully prepared via one-step soapless emulsion polymerization using common monomers, such as methyl methacrylate, methacrylic acid (MAA), butyl acrylate (BA) and N,N-diethylacrylamide (DEAA). The obtained monodisperse spherical mRAP particles were characterized by dynamic light scattering, Fourier transform infrared spectroscopy, scanning electron microscope and transmission electron microscope, which provided the information of particle size, components and anisotropic structure. Its multiple responsivities were investigated under the condition of diversified pH values, salinity and temperature. The results showed that the mRAP particles exhibited good dispersivity based on uniform particle size, as well as tunable emulsifiability and anticipated multiple responsiveness. Furthermore, the tunable emulsifiability of oil–water mixtures could be easily achieved by adjusting the mass ratios of MAA to DEAA. Meanwhile, the obtained multi-responsive polymers relying on simple and effective copolymerization can be used in fundamental research and industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  2. Schattling P, Jochum FD, Theato P (2014) Multi-stimuli responsive polymers—the all-in-one talents. Polym Chem 5:25–36

    Article  CAS  Google Scholar 

  3. Bajpai AK, Bajpai J, Saini R, Gupta R (2011) Responsive polymers in biology and technology. Polym Rev 51:53–97

    Article  CAS  Google Scholar 

  4. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  PubMed  Google Scholar 

  5. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307

    Article  CAS  Google Scholar 

  6. Chen C-J, Jin Q, Liu G-Y, Li D-D, Wang J-L, Ji J (2012) Reversibly light-responsive micelles constructed via a simple modification of hyperbranched polymers with chromophores. Polymer 53:3695–3703

    Article  CAS  Google Scholar 

  7. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka T, Okayama M, Minami H, Okubo M (2010) Dual stimuli-responsive “mushroom-like” Janus polymer particles as particulate surfactants. Langmuir 26:11732–11736

    Article  CAS  PubMed  Google Scholar 

  9. Feng C, Lü S, Gao C, Wang X, Xu X, Bai X, Gao N, Liu M, Wu L (2015) “Smart” fertilizer with temperature-and pH-responsive behavior via surface-Initiated polymerization for controlled release of nutrients. ACS Sustain Chem Eng 3:3157–3166

    Article  CAS  Google Scholar 

  10. Dan M, Su Y, Xiao X, Li S, Zhang W (2013) A new family of thermo-responsive polymers based on poly[N-(4-vinylbenzyl)-N,N-dialkylamine. Macromolecules 46:3137–3146

    Article  CAS  Google Scholar 

  11. de Jongh PA, Mortiboy A, Sulley GS, Bennett MR, Anastasaki A, Wilson P, Haddleton DM, Kempe K (2016) Dual stimuli-responsive comb polymers from modular N-acylated poly(aminoester)-based macromonomers. ACS Macro Lett 5:321–325

    Article  CAS  Google Scholar 

  12. Zhang X, Lü S, Gao C, Chen C, Zhang X, Liu M (2013) Highly stable and degradable multifunctional microgel for self-regulated insulin delivery under physiological conditions. Nanoscale 5:6498–6506

    Article  CAS  PubMed  Google Scholar 

  13. Lu C, Urban MW (2014) Tri-phasic size-and janus balance-tunable colloidal nanoparticles (JNPs). ACS Macro Lett 3:346–352

    Article  CAS  Google Scholar 

  14. Tu F, Lee D (2014) Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties. J Am Chem Soc 136:9999–10006

    Article  CAS  PubMed  Google Scholar 

  15. Wu G, Chen S-C, Liu C-L, Wang Y-Z (2015) Direct aqueous self-assembly of an amphiphilic diblock copolymer toward multistimuli-responsive fluorescent anisotropic micelles. ACS Nano 9:4649–4659

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Hu D, Jiang Z, Zhuang J, Xu Y, Guo X, Thayumanavan S (2016) Multi-stimuli-responsive amphiphilic assemblies through simple postpolymerization modifications. Macromolecules 49:6186–6192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao Z, Zhou X, Wang G (2016) Selective release of hydrophobic and hydrophilic cargos from multi-stimuli-responsive nanogels. ACS Appl Mater Interfaces 8:28888–28896

    Article  CAS  PubMed  Google Scholar 

  18. Xiong Y, Liu J, Wang Y, Wang H, Wang RM (2012) One-step synthesis of thermosensitive nanogels based on highly cross-linked poly(ionic liquid)s. Angew Chem Int Ed 51:9114–9118

    Article  CAS  Google Scholar 

  19. Li C, Wu Z, He YF, Song PF, Zhai W, Wang RM (2014) A facile fabrication of amphiphilic Janus and hollow latex particles by controlling multistage emulsion polymerization. J Colloid Interface Sci 426:39–43

    Article  CAS  PubMed  Google Scholar 

  20. Zhai W, Li T, He Y-F, Xiong Y, Wang R-M (2015) One-pot facile synthesis of half-cauliflower amphiphilic Janus particles with pH-switchable emulsifiabilities. RSC Adv 5:76211–76215

    Article  CAS  Google Scholar 

  21. Zhai W, Wang B, Wang Y, He YF, Song P, Wang RM (2016) An efficient strategy for preparation of polymeric Janus particles with controllable morphologies and emulsifiabilities. Colloid Surf A Physicochem Eng Aspects 503:94–100

    Article  CAS  Google Scholar 

  22. Yang F, Cao Z, Wang G (2015) Micellar assembly of a photo- and temperature-responsive amphiphilic block copolymer for controlled release. Polym Chem 6:7995–8002

    Article  CAS  Google Scholar 

  23. Wu W-C, Chen C-Y, Lee W-Y, Chen W-C (2015) Stimuli-responsive conjugated rod-coil block copolymers: synthesis, morphology, and applications. Polymer 65:A1–A16

    Article  CAS  Google Scholar 

  24. Topuzogullari M, Bulmus V, Dalgakiran E, Dincer S (2014) pH- and temperature-responsive amphiphilic diblock copolymers of 4-vinylpyridine and oligoethyleneglycol methacrylate synthesized by RAFT polymerization. Polymer 55:525–534

    Article  CAS  Google Scholar 

  25. Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    Article  CAS  Google Scholar 

  26. Wang Z, Rutjes FPJT, van Hest JCM (2014) pH responsive polymersome Pickering emulsion for simple and efficient Janus polymersome fabrication. Chem Commun 50:14550–14553

    Article  CAS  Google Scholar 

  27. Binks BP, Murakami R, Armes SP, Fujii S (2005) Temperature-induced inversion of nanoparticle-stabilized emulsions. Angew Chem 117:4873–4876

    Article  Google Scholar 

  28. Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y (2015) Multi-stimuli-responsive polymeric materials. Chem Eur J 21:13164–13174

    Article  CAS  PubMed  Google Scholar 

  29. Wang XH, Jiang GH, Li X, Tang BL, Wei Z, Mai CY (2013) Synthesis of multi-responsive polymeric nanocarriers for controlled release of bioactive agents. Polym Chem 4:4574–4577

    Article  CAS  Google Scholar 

  30. Fan X, Liu Y, Jia X, Wang S, Li C, Zhang B, Zhang H, Zhang Q (2015) Regulating the size and molecular weight of polymeric particles by 1,1-diphenylethene controlled soap-free emulsion polymerization. RSC Adv 5:95183–95190

    Article  CAS  Google Scholar 

  31. Guimaraes TR, Chaparro TDC, D’Agosto F, Lansalot M, Dos Santos AM, Bourgeat-Lami E (2014) Synthesis of multi-hollow clay-armored latexes by surfactant-free emulsion polymerization of styrene mediated by poly(ethylene oxide)-based macroRAFT/laponite complexes. Polym Chem 5:6611–6622

    Article  CAS  Google Scholar 

  32. Ren C, Liu X, Jiang X, Sun G, Huang X (2015) Polyisobutylene-b-poly(N,N-diethylacrylamide) well-defined amphiphilic diblock copolymer: synthesis and thermo-responsive phase behavior. J Polym Sci Polym Chem 53:1143–1150

    Article  CAS  Google Scholar 

  33. Binks BP, Rodrigues JA (2005) Inversion of emulsions stabilized solely by ionizable nanoparticles. Angew Chem Int Ed 44:441–444

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (21364012, 21263024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Min Wang or Yufeng He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhai, W., Wang, RM. et al. Preparation of multi-responsive amphiphilic particles by one-step soapless emulsion polymerization. Iran Polym J 27, 371–379 (2018). https://doi.org/10.1007/s13726-018-0608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0608-7

Keywords

Navigation