Molecular docking study of the anticandida activity some schiff bases and their complexes

Abstract

The research study entails the molecular docking study of some recently designed Schiff base complexes and their ligands (Schiff base) on two receptors, a crystal structure of Candida albicans Mep2 (5AF1) and a thiamin pyrophosphokinase from Candida albicans (2G9Z). These two receptors were used to investigate the inhibitory potentials of some Schiff bases on candida albicans when coupled with a central metal atom. The docking results for 2G9Z the complex A3 had the best binding affinity of 21.473 kcal/mol, while for 5AF1 the complex A4 best inhibits the crystal structure with a binding affinity of 23.518 kcal/mol. Showing that in both case the activity of the ligands was improved when the Schiff bases were coupled with a Lewis acid (metal ion) as its central metal atom.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235(3):983–1002

    Article  Google Scholar 

  2. An J et al (2005) Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteom 4(6):752–761

    Article  Google Scholar 

  3. Arthur DE (2019a) Molecular docking studies of some topoisomerase II inhibitors: implications in designing of novel anticancer drugs. Radiol Infect Dis 6(2):68–79

    Article  Google Scholar 

  4. Arthur DE, Uzairu A (2019) Molecular docking studies on the interaction of NCI anticancer analogues with human phosphatidylinositol 4, 5-bisphosphate 3-kinase catalytic subunit. J King Saud Univ Sci 31(4):1151–1166

    Article  Google Scholar 

  5. Arthur DE et al (2019b) Molecular docking studies on the interaction of NCI anticancer analogues with human phosphatidylinositol 4, 5-bisphosphate 3-kinase catalytic subunit. J King Saud Univ Sci 31:1151–1166

    Article  Google Scholar 

  6. Biswas K, Morschhäuser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56(3):649–669

    Article  Google Scholar 

  7. Cannon RD et al (2007) Candida albicans drug resistance—another way to cope with stress. Microbiology 153(10):3211–3217

    Article  Google Scholar 

  8. Damme SV, Bultinck P (2007) A new computer program for QSAR-analysis: ARTE-QSAR. J Comput Chem 28(11):1924–1928

    Article  Google Scholar 

  9. Ernst JF (2000) Transcription factors in Candida albicans—environmental control of morphogenesis. Microbiology 146(8):1763–1774

    MathSciNet  Article  Google Scholar 

  10. Evans DA (2014) History of the Harvard ChemDraw project. Angew Chem Int Ed 53(42):11140–11145

    Article  Google Scholar 

  11. Hehre WJ, Huang WW (1995) Chemistry with computation: an introduction to SPARTAN. Wavefunction Inc, Irvine

    Google Scholar 

  12. Khandelwal A et al (2007) Computational models to assign biopharmaceutics drug disposition classification from molecular structure. Pharm Res 24(12):2249–2262

    Article  Google Scholar 

  13. Li Z et al (2004) Personal experience with four kinds of chemical structure drawing software: review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J Chem Inf Comput Sci 44(5):1886–1890

    Article  Google Scholar 

  14. Mayer FL et al (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128

    Article  Google Scholar 

  15. Naglik JR et al (2008) Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology (Reading, England) 154(Pt 11):3266

    Article  Google Scholar 

  16. Palmer GE et al (2007) Autophagy in the pathogen Candida albicans. Microbiology 153(1):51–58

    Article  Google Scholar 

  17. Perumal P et al (2007) Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 51(7):2454–2463

    Article  Google Scholar 

  18. Sánchez-Martı́nez C, Pérez-Martı́n J (2001) Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis—similar inputs, different outputs. Curr Opin Microbiol 4(2):214–221

    Article  Google Scholar 

  19. Santini S et al (2008) Structural characterization of CA1462, the Candida albicans thiamine pyrophosphokinase. BMC Struct Biol 8(1):33

    Article  Google Scholar 

  20. Selmecki A et al (2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313(5785):367–370

    Article  Google Scholar 

  21. Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9(10):737

    Article  Google Scholar 

  22. Van Den Berg B et al (2016) Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nat Commun 7:11337

    Article  Google Scholar 

  23. Viswanadhan VN et al (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29(3):163–172

    Article  Google Scholar 

Download references

Funding

There was no funding for this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Umma Muhammed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhammed, U., Uzairu, A. & Idris, S.O. Molecular docking study of the anticandida activity some schiff bases and their complexes. Netw Model Anal Health Inform Bioinforma 9, 46 (2020). https://doi.org/10.1007/s13721-020-00253-8

Download citation

Keywords

  • Molecular docking
  • Binding energy
  • Complexes
  • Schiff base
  • Candida A