Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss

Abstract

Purpose of Review

This article reviews the current literature on dietary interventions, including time-restricted eating (TRE), intermittent fasting (IF), and fasting-mimicking diets (FMD) and their effects on weight loss.

Recent Findings

Dietary interventions, primarily known for their potential health benefits, are attracting considerable interest also for their effects on weight loss.

Summary

The literature suggests that many popular diets can induce weight loss but only a limited number of studies actually demonstrate long-term weight loss efficacy. Here we present an update on the latest studies on some of the most popular dietary interventions able to trigger the physiology of fasting and highlight their impact on weight loss in overweight or obese individuals.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Roberto CA, Swinburn B, Hawkes C, Huang TT-K, Costa SA, Ashe M, et al. Patchy progress on obesity prevention: emerging examples, entrenched barriers, and new thinking. Lancet. 2015;385:2400–9. https://doi.org/10.1016/S0140-6736(14)61744-X.

    Article  PubMed  Google Scholar 

  2. 2.

    Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27. https://doi.org/10.1056/NEJMoa1614362.

    Article  PubMed  Google Scholar 

  3. 3.

    Collaboration TERF. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377:1085–95. https://doi.org/10.1016/S0140-6736(11)60105-0.

    Article  Google Scholar 

  4. 4.

    MacLaughlin HL, Hall WL, Sanders TAB, Macdougall IC. Risk for chronic kidney disease increases with obesity: Health Survey for England 2010. Public Health Nutr. 2015;18:3349–54. https://doi.org/10.1017/S1368980015000488.

    Article  PubMed  Google Scholar 

  5. 5.

    Younossi ZM, Henry L. The impact of obesity and type 2 diabetes on chronic liver disease. Off J Am Coll Gastroenterol | ACG. 2019;114 Available: https://journals.lww.com/ajg/Fulltext/2019/11000/The_Impact_of_Obesity_and_Type_2_Diabetes_on.9.aspx. Accessed 20 May 2020.

  6. 6.

    Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106:473–81. https://doi.org/10.1172/JCI10842.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bellou V, Belbasis L, Tzoulaki I, Evangelou E. Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLoS One. 2018;13:e0194127. Available. https://doi.org/10.1371/journal.pone.0194127.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metab Clin Exp. 2019;92:121–35. https://doi.org/10.1016/j.metabol.2018.11.001.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Jiang L, Rong J, Wang Y, Hu F, Bao C, Li X, et al. The relationship between body mass index and hip osteoarthritis: a systematic review and meta-analysis. Jt Bone Spine. 2011;78:150–5. https://doi.org/10.1016/j.jbspin.2010.04.011.

    Article  Google Scholar 

  10. 10.

    Zhang Q, Liu S, Liu R, Xue H, Wang Y. Food policy approaches to obesity prevention: an international perspective. Curr Obes Rep. 2014;3:171–82. https://doi.org/10.1007/s13679-014-0099-6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bray GA, Frühbeck G, Ryan DH, Wilding JPH. Management of obesity. Lancet. 2016;387:1947–56. https://doi.org/10.1016/S0140-6736(16)00271-3.

    Article  PubMed  Google Scholar 

  12. 12.

    Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaisse WJ, et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci. 2014;111:16647–53. https://doi.org/10.1073/pnas.1413965111.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Mitchell SJ, Bernier M, Mattison JA, Aon MA, Kaiser TA, Anson RM, et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 2019;29:221–228.e3. https://doi.org/10.1016/j.cmet.2018.08.011.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci. 2003;100:6216 LP–220. https://doi.org/10.1073/pnas.1035720100.

    CAS  Article  Google Scholar 

  15. 15.

    Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014;20:991–1005. https://doi.org/10.1016/j.cmet.2014.11.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cheng CW, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, et al. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell. 2017;168:775–788.e12. https://doi.org/10.1016/j.cell.2017.01.040.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Berrigan D, Perkins SN, Haines DC, Hursting SD. Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis. 2002;23:817–22. https://doi.org/10.1093/carcin/23.5.817.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Sundaram S, Yan L. Time-restricted feeding mitigates high-fat diet-enhanced mammary tumorigenesis in MMTV-PyMT mice. Nutr Res. 2018;59:72–9. https://doi.org/10.1016/j.nutres.2018.07.014.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Di Tano M, Raucci F, Vernieri C, Caffa I, Buono R, Fanti M, et al. Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers. Nat Commun. 2020;11:2332. https://doi.org/10.1038/s41467-020-16243-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Halagappa VKM, Guo Z, Pearson M, Matsuoka Y, Cutler RG, LaFerla FM, et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2007;26:212–20. https://doi.org/10.1016/j.nbd.2006.12.019.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Wang H-B, Loh DH, Whittaker DS, Cutler T, Howland D, Colwell CS. Time-restricted feeding improves circadian dysfunction as well as motor symptoms in the Q175 mouse model of Huntington’s disease. eNeuro. 2018;5:ENEURO.0431–17.2017. https://doi.org/10.1523/ENEURO.0431-17.2017.

    Article  Google Scholar 

  22. 22.

    Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S, et al. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep. 2016;15:2136–46. https://doi.org/10.1016/j.celrep.2016.05.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 2015;22:86–99. https://doi.org/10.1016/j.cmet.2015.05.012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23:1048–59. https://doi.org/10.1016/j.cmet.2016.06.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity. 2009;17:2100–2. https://doi.org/10.1038/oby.2009.264.

    Article  PubMed  Google Scholar 

  26. 26.

    Garaulet M, Gómez-Abellán P, Alburquerque-Béjar JJ, Lee Y-C, Ordovás JM, Scheer FAJL. Timing of food intake predicts weight loss effectiveness. Int J Obes. 2013;37:604–11. https://doi.org/10.1038/ijo.2012.229.

    CAS  Article  Google Scholar 

  27. 27.

    Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848–60. https://doi.org/10.1016/j.cmet.2012.04.019.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Gabel K, Hoddy KK, Haggerty N, Song J, Kroeger CM, Trepanowski JF, et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Heal Aging. 2018;4:345–53. https://doi.org/10.3233/NHA-170036.

    CAS  Article  Google Scholar 

  29. 29.

    Ravussin E, Beyl RA, Poggiogalle E, Hsia DS, Peterson CM. Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity. 2019;27:1244–54. https://doi.org/10.1002/oby.22518.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients. 2019;11:1234. https://doi.org/10.3390/nu11061234.

    CAS  Article  PubMed Central  Google Scholar 

  31. 31.

    Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27:1212–1221.e3. https://doi.org/10.1016/j.cmet.2018.04.010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gill S, Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22:789–98. https://doi.org/10.1016/j.cmet.2015.09.005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    van Amelsvoort L, Schouten EG, Kok FJ. Duration of shiftwork related to body mass index and waist to hip ratio. Int J Obes. 1999;23:973–8. https://doi.org/10.1038/sj.ijo.0801028.

    Article  Google Scholar 

  34. 34.

    Niedhammer I, Lert F, Marne MJ. Prevalence of overweight and weight gain in relation to night work in a nurses’ cohort. Int J Obes Relat Metab Disord. 1996;20:625–33 Available: http://europepmc.org/abstract/MED/8817356. Accessed 20 May 2020.

  35. 35.

    Arne L, Moreno C, Holmbäck U, Lennernäs M, Tucker P. Eating and shift work – effects on habits, metabolism and performance. Scand J Work Environ Health. 2010;36:150–62 Available: https://www.sjweh.fi/show_abstract.php?abstract_id=2898. Accessed 20 May 2020.

  36. 36.

    Lowe DA, Wu N, Rohdin-Bibby L, Moore AH, Kelly N, Liu YE, et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity. JAMA Intern Med. 2020;94143:1–9. https://doi.org/10.1001/jamainternmed.2020.4153.

    Article  Google Scholar 

  37. 37.

    Mukherji A, Kobiita A, Damara M, Misra N, Meziane H, Champy M-F, et al. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci. 2015;112:E6691 LP–E6698. https://doi.org/10.1073/pnas.1519807112.

    CAS  Article  Google Scholar 

  38. 38.

    Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C. Food intake during the normal activity phase prevents obesity and circadian Desynchrony in a rat model of night work. Endocrinology. 2010;151:1019–29. https://doi.org/10.1210/en.2009-0864.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Panda S. Circadian physiology of metabolism. Science (80- ). 2016;354:1008 LP–1015. https://doi.org/10.1126/science.aah4967.

    CAS  Article  Google Scholar 

  40. 40.

    Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J. 2012;26:3493–502. https://doi.org/10.1096/fj.12-208868.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Stephan FK, Davidson AJ. Glucose, but not fat, phase shifts the feeding-entrained circadian clock. Physiol Behav. 1998;65:277–88. https://doi.org/10.1016/S0031-9384(98)00166-8.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Froy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol. 2007;28:61–71. https://doi.org/10.1016/j.yfrne.2007.03.001.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G, et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med. 2016;14:1–10. https://doi.org/10.1186/s12967-016-1044-0.

    CAS  Article  Google Scholar 

  44. 44.

    Tinsley GM, Forsse JS, Butler NK, Paoli A, Bane AA, La Bounty PM, et al. Time-restricted feeding in young men performing resistance training: a randomized controlled trial. Eur J Sport Sci. 2017;17:200–7. https://doi.org/10.1080/17461391.2016.1223173.

    Article  PubMed  Google Scholar 

  45. 45.

    Anton SD, Lee SA, Donahoo WT, McLaren C, Manini T, Leeuwenburgh C, et al. The effects of time restricted feeding on overweight, Older Adults: A Pilot Study. Nutrients. 2019;11:1500. https://doi.org/10.3390/nu11071500.

    CAS  Article  PubMed Central  Google Scholar 

  46. 46.

    Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A, et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020;31:92–104.e5. https://doi.org/10.1016/j.cmet.2019.11.004.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Cienfuegos S, Gabel K, Kalam F, Ezpeleta M, Wiseman E, Pavlou V, et al. Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metab. 2020;32:366–378.e3. https://doi.org/10.1016/j.cmet.2020.06.018.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Chow LS, Manoogian ENC, Alvear A, Fleischer JG, Thor H, Dietsche K, et al. Time-restricted eating effects on body composition and metabolic measures in humans who are overweight: a feasibility study. Obesity. 2020;28:860–9. https://doi.org/10.1002/oby.22756.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Madan B, Walker MP, Young R, Quick L, Orgel KA, Ryan M, et al. USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds. Proc Natl Acad Sci. 2016;113:E2945–54. https://doi.org/10.1073/pnas.1605691113.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Martin AM, Sun EW, Rogers GB, Keating DJ. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front Physiol. 2019;10:428. Available:. https://doi.org/10.3389/fphys.2019.00428.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Zeb F, Wu X, Chen L, Fatima S, Haq I, Chen A, et al. Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. Br J Nutr. 2020;123:1216–26. https://doi.org/10.1017/S0007114519003428.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005;434:113–8. https://doi.org/10.1038/nature03354.

    CAS  Article  Google Scholar 

  53. 53.

    Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science (80- ). 2005;310:1641 LP–641. https://doi.org/10.1126/science.1118357.

    Article  Google Scholar 

  54. 54.

    Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science (80- ). 2004;305:390 LP–392. https://doi.org/10.1126/science.1099196.

    CAS  Article  Google Scholar 

  55. 55.

    Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014;20:1006–17. https://doi.org/10.1016/j.cmet.2014.11.008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Antoni R, Robertson TM, Robertson MD, Johnston JD. A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. J Nutr Sci. 2018;7:e22. https://doi.org/10.1017/jns.2018.13.

    CAS  Article  Google Scholar 

  57. 57.

    Sichieri R, Everhart JE, Roth H. A prospective study of hospitalization with gallstone disease among women: role of dietary factors, fasting period, and dieting. Am J Public Health. 1991;81:880–4. https://doi.org/10.2105/AJPH.81.7.880.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Rong S, Snetselaar LG, Xu G, Sun Y, Liu B, Wallace RB, et al. Association of skipping breakfast with cardiovascular and all-cause mortality. J Am Coll Cardiol. 2019;73:2025–32. https://doi.org/10.1016/j.jacc.2019.01.065.

    Article  PubMed  Google Scholar 

  59. 59.

    De Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019;381:2541–51. https://doi.org/10.1056/NEJMra1905136.

    Article  PubMed  Google Scholar 

  60. 60.

    Gotthardt JD, Verpeut JL, Yeomans BL, Yang JA, Yasrebi A, Roepke TA, et al. Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology. 2016;157:679–91. https://doi.org/10.1210/en.2015-1622.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Arnason TG, Bowen MW, Mansell KD. Effects of intermittent fasting on health markers in those with type 2 diabetes: a pilot study. World J Diabetes. 2017;8:154–64. https://doi.org/10.4239/wjd.v8.i4.154.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Carter S, Clifton PM, Keogh JB. The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial. Diabetes Res Clin Pract. 2019;151:11–9. https://doi.org/10.1016/j.diabres.2019.03.022.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Trepanowski JF, Kroeger CM, Barnosky A, Klempel MC, Bhutani S, Hoddy KK, et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern Med. 2017;177:930–8. https://doi.org/10.1001/jamainternmed.2017.0936.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Welton S, Minty R, Willms H, Poirier D, Madden S, Kelly L. Systematic review - intermittent fasting and weight loss. Can Fam Physician. 2020;66:117–25.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Catenacci VA, Pan Z, Ostendorf D, Brannon S, Gozansky WS, Mattson MP, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity. 2016;24:1874–83. https://doi.org/10.1002/oby.21581.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Headland ML, Clifton PM, Keogh JB. Effect of intermittent compared to continuous energy restriction on weight loss and weight maintenance after 12 months in healthy overweight or obese adults. Int J Obes. 2019;43:2028–36. https://doi.org/10.1038/s41366-018-0247-2.

    CAS  Article  Google Scholar 

  67. 67.

    Antoni R, Johnston KL, Collins AL, Robertson MD. Intermittent v. continuous energy restriction: differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants. Br J Nutr. 2018;119:507–16. https://doi.org/10.1017/S0007114517003890.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Bowen J, Brindal E, James-Martin G, Noakes M. Randomized trial of a high protein, partial meal replacement program with or without alternate day fasting: similar effects on weight loss, retention status, nutritional, metabolic, and behavioral outcomes. Nutrients. 2018;10:1145. https://doi.org/10.3390/nu10091145.

    CAS  Article  PubMed Central  Google Scholar 

  69. 69.

    Carter S, Clifton PM, Keogh JB. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract. 2016;122:106–12. https://doi.org/10.1016/j.diabres.2016.10.010.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Carter S, Clifton PM, Keogh JB. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA Netw Open. 2018;1:e180756. https://doi.org/10.1001/jamanetworkopen.2018.0756.

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Cho A-R, Moon J-Y, Kim S, An K-Y, Oh M, Jeon JY, et al. Effects of alternate day fasting and exercise on cholesterol metabolism in overweight or obese adults: a pilot randomized controlled trial. Metab Clin Exp. 2019;93:52–60. https://doi.org/10.1016/j.metabol.2019.01.002.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes. 2011;35:714–27. https://doi.org/10.1038/ijo.2010.171.

    CAS  Article  Google Scholar 

  73. 73.

    Trepanowski JF, Kroeger CM, Barnosky A, Klempel M, Bhutani S, Hoddy KK, et al. Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and circulating adipokines: secondary analysis of a randomized controlled trial. Clin Nutr. 2018;37:1871–8. https://doi.org/10.1016/j.clnu.2017.11.018.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Anton SD, Moehl K, Donahoo WT, Marosi K, Lee SA, Mainous AG III, et al. Flipping the metabolic switch: understanding and applying the health benefits of fasting. Obesity. 2018;26:254–68. https://doi.org/10.1002/oby.22065.

    Article  PubMed  Google Scholar 

  75. 75.

    Xie K, Neff F, Markert A, Rozman J, Aguilar-Pimentel JA, Amarie OV, et al. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nat Commun. 2017;8:155. https://doi.org/10.1038/s41467-017-00178-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Eshghinia S, Mohammadzadeh F. The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. J Diabetes Metab Disord. 2013;12:4. https://doi.org/10.1186/2251-6581-12-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Varady KA, Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Haus JM, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12:146. https://doi.org/10.1186/1475-2891-12-146.

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Varady KA, Bhutani S, Church EC, Klempel MC. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr. 2009;90:1138–43. https://doi.org/10.3945/ajcn.2009.28380.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Varady KA. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity. 2013;21:1370–9. https://doi.org/10.1002/oby.20353.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Klempel MC, Kroeger CM, Varady KA. Alternate day fasting increases LDL particle size independently of dietary fat content in obese humans. Eur J Clin Nutr. 2013;67:783–5. https://doi.org/10.1038/ejcn.2013.83.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Varady KA, Dam VT, Klempel MC, Horne M, Cruz R, Kroeger CM, et al. Effects of weight loss via high fat vs low fat alternate day fasting diets on free fatty acid profiles. Sci Rep. 2015;5:7561. https://doi.org/10.1038/srep07561.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Hoddy KK, Bhutani S, Phillips SA, Varady KA. Effects of different degrees of insulin resistance on endothelial function in obese adults undergoing alternate day fasting. Nutr Heal Aging. 2016;4:63–71. https://doi.org/10.3233/NHA-1611.

    CAS  Article  Google Scholar 

  83. 83.

    Hoddy KK, Kroeger CM, Trepanowski JF, Barnosky A, Bhutani S, Varady KA. Meal timing during alternate day fasting: impact on body weight and cardiovascular disease risk in obese adults. Obesity. 2014;22:2524–31. https://doi.org/10.1002/oby.20909.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Furmli S, Elmasry R, Ramos M, Fung J. Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Rep. 2018;2018:bcr-2017-221854. https://doi.org/10.1136/bcr-2017-221854.

    Article  PubMed  Google Scholar 

  85. 85.

    Anastasiou CA, Karfopoulou E, Yannakoulia M. Weight regaining: from statistics and behaviors to physiology and metabolism. Metabolism. 2015;64:1395–407. https://doi.org/10.1016/j.metabol.2015.08.006.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Coutinho SR, Halset EH, Gåsbakk S, Rehfeld JF, Kulseng B, Truby H, et al. Compensatory mechanisms activated with intermittent energy restriction: a randomized control trial. Clin Nutr. 2018;37:815–23. https://doi.org/10.1016/j.clnu.2017.04.002.

    Article  PubMed  Google Scholar 

  87. 87.

    Varady KA. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev. 2011;12:e593–601. https://doi.org/10.1111/j.1467-789X.2011.00873.x.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Varady KA, Bhutani S, Klempel MC, Kroeger CM. Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults. Lipids Health Dis. 2011;10:119. https://doi.org/10.1186/1476-511X-10-119.

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Hoddy KK, Kroeger CM, Trepanowski JF, Barnosky AR, Bhutani S, Varady KA. Safety of alternate day fasting and effect on disordered eating behaviors. Nutr J. 2015;14:44. https://doi.org/10.1186/s12937-015-0029-9.

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Olansky L. Strategies for management of intermittent fasting in patients with diabetes. Cleve Clin J Med. 2017;84:357 LP–358. https://doi.org/10.3949/ccjm.84a.16118.

    Article  Google Scholar 

  91. 91.

    Corley BT, Carroll RW, Hall RM, Weatherall M, Parry-Strong A, Krebs JD. Intermittent fasting in type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med. 2018;35:588–94. https://doi.org/10.1111/dme.13595.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Dorff TB, Groshen S, Garcia A, Shah M, Tsao-Wei D, Pham H, et al. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer. 2016;16:360. https://doi.org/10.1186/s12885-016-2370-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Wei M, Brandhorst S, Shelehchi M, Mirzaei H, Cheng CW, Budniak J, et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med. 2017;9:eaai8700. https://doi.org/10.1126/scitranslmed.aai8700.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Wei S, Han R, Zhao J, Wang S, Huang M, Wang Y, et al. Intermittent administration of a fasting-mimicking diet intervenes in diabetes progression, restores β cells and reconstructs gut microbiota in mice. Nutr Metab (Lond). 2018;15:80. https://doi.org/10.1186/s12986-018-0318-3.

    CAS  Article  Google Scholar 

  95. 95.

    Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, et al. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 2019;26:2704–2719.e6. https://doi.org/10.1016/j.celrep.2019.02.019.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3:207–15. https://doi.org/10.1016/S2213-8587(14)70134-2.

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Aron-Wisnewsky J, Clement K. The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr Atheroscler Rep. 2014;16:454. https://doi.org/10.1007/s11883-014-0454-9.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4. https://doi.org/10.1038/nature07540.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Pucci A, Batterham RL. Endocrinology of the gut and the regulation of body weight and metabolism. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, et al., editors. South Dartmouth (MA); 2000.

    Google Scholar 

  100. 100.

    Singh S, Dulai PS, Zarrinpar A, Ramamoorthy S, Sandborn WJ. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat Rev Gastroenterol Hepatol. 2017;14:110–21. https://doi.org/10.1038/nrgastro.2016.181.

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 2014;8:2116–30. https://doi.org/10.1038/ismej.2014.45.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Raza GS, Putaala H, Hibberd AA, Alhoniemi E, Tiihonen K, Mäkelä KA, et al. Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Sci Rep. 2017;7:5294. https://doi.org/10.1038/s41598-017-05259-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Ge L, Sadeghirad B, Ball GDC, da Costa BR, Hitchcock CL, Svendrovski A, et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ. 2020;369:m696. https://doi.org/10.1136/bmj.m696.

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Schübel R, Nattenmüller J, Sookthai D, Nonnenmacher T, Graf ME, Riedl L, et al. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: a randomized controlled trial. Am J Clin Nutr. 2018;108:933–45. https://doi.org/10.1093/ajcn/nqy196.

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Sundfør TM, Svendsen M, Tonstad S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial. Nutr Metab Cardiovasc Dis. 2018;28:698–706. https://doi.org/10.1016/j.numecd.2018.03.009.

    Article  PubMed  Google Scholar 

  106. 106.

    Conley M, Le Fevre L, Haywood C, Proietto J. Is two days of intermittent energy restriction per week a feasible weight loss approach in obese males? A randomised pilot study. Nutr Diet. 2018;75:65–72. https://doi.org/10.1111/1747-0080.12372.

    Article  PubMed  Google Scholar 

  107. 107.

    Hutchison AT, Liu B, Wood RE, Vincent AD, Thompson CH, O’Callaghan NJ, et al. Effects of intermittent versus continuous energy intakes on insulin sensitivity and metabolic risk in women with overweight. Obesity. 2019;27:50–8. https://doi.org/10.1002/oby.22345.

    CAS  Article  PubMed  Google Scholar 

  108. 108.

    Kalam F, Kroeger CM, Trepanowski JF, Gabel K, Song JH, Cienfuegos S, et al. Beverage intake during alternate-day fasting: relationship to energy intake and body weight. Nutr Health. 2019;25:167–71. https://doi.org/10.1177/0260106019841452.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sebastian Brandhorst.

Ethics declarations

Conflict of Interest

V.D.L. has equity interest in L-Nutra, a company that develops medical food. V.D.L. and S.B. have filed patents related to the FMD at the University of Southern California (USC). The University of Southern California has licensed intellectual property to L-Nutra. As part of this license agreement, the University has the potential to receive royalty payments from L-Nutra.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity Treatment

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fanti, M., Mishra, A., Longo, V.D. et al. Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Curr Obes Rep (2021). https://doi.org/10.1007/s13679-021-00424-2

Download citation

Keywords

  • Obesity
  • Time-restricted eating
  • Intermittent fasting
  • Fasting-mimicking diet
  • Weight loss