The summed start-up costs in a unit commitment problem

  • René Brandenberg
  • Matthias Huber
  • Matthias Silbernagl
Original Paper
  • 55 Downloads

Abstract

We consider the sum of the incurred start-up costs of a single unit in a Unit Commitment problem. Our major result is a correspondence between the facets of its epigraph and some binary trees for concave start-up cost functions CU, which is bijective if CU is strictly concave. We derive an exponential \({\mathcal{H}}\)-representation of this epigraph, and provide an exact linear separation algorithm. These results significantly reduce the integrality gap of the Mixed Integer formulation of a Unit Commitment Problem compared to current literature.

Mathematics Subject Classification

90C57 90C11 90B99 52B12 

Keywords

Unit commitment Mixed integer programming Summed Start-up costs Start-up cost epigraph Valid inequalities Integrality gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrión M, Arroyo J (2006) A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans Power Syst 21(3): 1371–1378CrossRefGoogle Scholar
  2. Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8(1): 101–111CrossRefGoogle Scholar
  3. Davey BA, Priestley HA (2002) Introduction to lattices and order, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  4. Egerer J, Gerbaulet C, Ihlenburg R, Kunz F, Reinhard B, Hirschhausen CV, Weber A, Weibezahn J (2014) Electricity sector data for policy-relevant modeling: data documentation and applications to the german and european electricity markets. Data Documentation 72, Deutsches Institut für Wirtschaftsforschung (DIW), BerlinGoogle Scholar
  5. ENTSO-E (2007) Hourly consumption profiles. Tech. rep., ENTSO-E, European Network of Transmission System Operators for Electricity. http://www.entsoe.eu/data/data-portal/consumption/
  6. EURELECTRIC (2003) Efficiency in electricity generation. Tech. rep, EURELECTRIC, Brussels, BelgiumGoogle Scholar
  7. Gabow HN, Bentley JL, Tarjan RE (1984) Scaling and related techniques for geometry problems. In: Proceedings of the sixteenth annual ACM symposium on theory of computing, STOC ’84. ACM, New York, pp 135–143Google Scholar
  8. Garver L (1962) Power generation scheduling by integer programming-development of theory. Power Apparatus Syst Part III Trans Ame Inst Electr Eng 81(3): 730–734Google Scholar
  9. Huber M, Silbernagl M (2015) Modeling start-up times in unit commitment by limiting temperature increase and heating. In: European Energy Market (EEM), 2015 12th International Conference on the, pp 1–5. doi: 10.1109/EEM.2015.7216755
  10. Kumar N, Besuner PM, Lefton SA, Agan DD, Hileman DA (2012) Power plant cycling costs. Tech. rep, Intertek APTECH, Sunnyvale, CaliforniaGoogle Scholar
  11. Morales-España G, Latorre J, Ramos A (2013) Tight and compact MILP formulation for the thermal unit commitment problem. IEEE Trans Power Syst 28(4): 4897–4908CrossRefGoogle Scholar
  12. Morales-Espana G, Latorre J, Ramos A (2013) Tight and compact milp formulation of start-up and shut-down ramping in unit commitment. In: Power and energy society general meeting (PES), 2013 IEEE, p 1. doi: 10.1109/PESMG.2013.6672560
  13. Muckstadt J, Wilson R (1968) An application of mixed-integer programming duality to scheduling thermal generating systems. Power Apparatus Syst IEEE Trans PAS-87(12): 1968–1978. doi: 10.1109/TPAS.1968.292156 CrossRefGoogle Scholar
  14. Nowak MP, Römisch W (2000) Stochastic lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty. Ann Oper Res 100(1–4): 251–272CrossRefGoogle Scholar
  15. Ostrowski J, Anjos M, Vannelli A (2012) Tight mixed integer linear programming formulations for the unit commitment problem. Power Syst IEEE Trans 27(1): 39–46. doi: 10.1109/TPWRS.2011.2162008 CrossRefGoogle Scholar
  16. Padberg MW (1973) On the facial structure of set packing polyhedra. Math. Program 5(1): 199–215CrossRefGoogle Scholar
  17. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14): 3624–3648CrossRefGoogle Scholar
  18. Rosen KH (ed) (1999) Handbook of discrete and combinatorial mathematics. Discrete mathematics and its applications. CRC Press, Boca RatonGoogle Scholar
  19. Silbernagl M (2015) A polyhedral analysis of start-up process models in unit commitment problems. PhD thesis, Technische Universität MünchenGoogle Scholar
  20. Silbernagl M, Huber M, Brandenberg R (2014) Improving accuracy and efficiency of start-up cost formulations in MIP unit commitment by modeling power plant temperatures. arXiv:1408.2644 [math]
  21. Simoglou C, Biskas P, Bakirtzis A (2010) Optimal self-scheduling of a thermal producer in short-term electricity markets by MILP. IEEE Trans Power Syst 25(4): 1965–1977CrossRefGoogle Scholar
  22. Vuillemin J (1980) A unifying look at data structures. Commun ACM 23(4): 229–239CrossRefGoogle Scholar
  23. Wood A, Wollenberg B (1996) Power generation, operation and control, 2nd edn. Wiley, New YorkGoogle Scholar

Copyright information

© EURO - The Association of European Operational Research Societies 2016

Authors and Affiliations

  • René Brandenberg
    • 1
  • Matthias Huber
    • 2
  • Matthias Silbernagl
    • 1
  1. 1.Department of MathematicsTechnische Universität MünchenGarchingGermany
  2. 2.Department of Electrical and Computer EngineeringTechnische Universität MünchenMunichGermany

Personalised recommendations