Molecular Methods for Detection of Beta and Gammapapillomaviruses for Non-melanoma Skin Cancer

Abstract

Purpose of review

Human Papillomaviruses (HPV) have some associations with that of the beta and gamma genera with non melanoma skin cancers (NMSC). The detection of HPV in clinical specimens is molecular-based since the isolation of the virus in in vitro cell lines has not been achieved. In this contest, we provide information about the choices of molecular methods applicable in epidemiological surveys.

Recent findings

A limited number of assays have been developed to detect and genotype cutaneous HPVs (associated with NMSC). Consensus PCR followed by hybridization, consensus PCR followed by sequencing, multiplex PCR, and new genotyping are some methods to detect a proportion of the HPV types implicated in skin lesions with differing sensitivities and specificities.

Summary

The current review discusses about various choices on different tests in the detection of cutaneous HPVs. Most available methods rely on the amplification of DNA by consensus PCR followed by sequencing. Amplification of DNA by consensus PCR followed by sequencing assays is a powerful highthroughput tool that 24 could be used to detect multiple infections and to learn more about the natural history of genus alpha and beta skin HPV types. 25 This method is applicable for large epidemiological studies that require high-throughput testing to analyze the role of these HPVs 26 in human disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Alam M, Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med. 2001;344:975–83.

    CAS  Article  Google Scholar 

  2. 2.

    Ameur A, Meiring TL, Bunikis I, Haggqvist S, Lindau C, Lindberg JH, et al. Comprehensive profiling of the vaginal microbiome in HIV positive women using massive parallel semiconductor sequencing. Sci Rep. 2014;4:67–4398.

    Google Scholar 

  3. 3.

    Arroyo LS, Smelov V, Bzhalava D, Eklund C, Hultin E, Dillner J. Next generation sequencing for human papillomavirus genotyping. J Clin Virol. 2013;58(2):437–42.

    CAS  Article  Google Scholar 

  4. 4.

    Barzon L, Militello V, Lavezzo E, Franchin E, Peta E, Squarzon L, et al. Human papillomavirus genotyping by 454 next generation sequencing technology. J Clin Virol. 2011;52(2):93–7.

    CAS  Article  Google Scholar 

  5. 5.

    Berkhout RJ, Bouwes Bavinck JN, ter Schegget J. Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients. J Clin Microbiol. 2000;38:2087–96.

    CAS  Article  Google Scholar 

  6. 6.

    Berkhout RJ, Tieben LM, Smits HL, Bavinck JN, Vermeer BJ, ter Schegget J. Nested PCR approach for detection and typing of epidermodysplasia verruciformis-associated human papillomavirus types in cutaneous cancers from renal transplant recipients. J Clin Microbiol. 1995;33:690–5.

    CAS  Article  Google Scholar 

  7. 7.

    Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70–9.

    CAS  Article  Google Scholar 

  8. 8.

    Biliris KA, Koumantakis E, Dokianakis DN, Sourvinos G, Spandidos DA. Human papillomavirus infection of non-melanoma skin cancers in immunocompetent hosts. Cancer Lett. 2000;161:83–8.

    CAS  Article  Google Scholar 

  9. 9.

    Carter JJ, Madeleine MM, Shera K, Schwartz SM, Cushing-Haugen KL, Wipf GC, et al. Human papillomavirus 16 and 18 L1 serology compared across anogenital cancer sites. Cancer Res. 2001;61(5):1934–40.

    CAS  PubMed  Google Scholar 

  10. 10.

    Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC, Schiller JT, et al. Arrangement of L2 within the papillomavirus capsid. J Virol. 2008;82(11):5190–7.

    CAS  Article  Google Scholar 

  11. 11.

    Carozzi F, Bisanzi S, Sani C, Zappa M, Cecchini S, Ciatto S, et al. Agreement between the AMPLICOR human papillomavirus test and the hybrid capture 2 assay in detection of high-risk human papillomavirus and diagnosis of biopsy-confirmed high-grade cervical disease. J Clin Microbiol. 2007;45:2364–009.

    Article  Google Scholar 

  12. 12.

    Brink AA, Lloveras B, Nindl I, Heideman DA, Kramer D, Pol R, et al. Development of a general-primer-PCR-reverse-line-blotting system for detection of beta and gamma cutaneous human papillomaviruses. J Clin Microbiol. 2005;43:5581–7.

    CAS  Article  Google Scholar 

  13. 13.

    Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 2000;5:557–67.

    CAS  Article  Google Scholar 

  14. 14.

    Choi YD, Jung WW, Nam JH, Choi HS, Park CS. Detection of HPV genotypes in cervical lesions by the HPV DNA Chip and sequencing. Gynecol Oncol. 2005;98:369–75.

    CAS  Article  Google Scholar 

  15. 15.

    Conway MJ, Meyers C. Replication and assembly of human papillomaviruses. J Dent Res. 2009:2307–017.

  16. 16.

    Coutlee F, Rouleau D, Petignat P, Ghattas G, Kornegay JR, Schlag P, et al. Enhanced detection and typing of human papillomavirus (HPV) DNA in anogenital samples with PGMY primers and the linear array HPV genotyping test. J Clin Microbiol. 2006;44:1998–2006.

    CAS  Article  Google Scholar 

  17. 17.

    Cuschieri KS, Whitley MJ, Cubie H. Human papillomavirus type specifi c DNA and RNA persistence – implications for cervical disease progression and monitoring. J Med Virol. 2004;73:65–70.

    CAS  Article  Google Scholar 

  18. 18.

    de Francesco MA, Gargiulo F, Schreiber C, Ciravolo G, Salinaro F, Manca N. Comparison of the AMPLICOR human papillomavirus test and the hybrid capture 2 assay for detection of high-risk human papillomavirus in women with abnormal PAP smear. J Virol Methods. 2008;147:2010–07.

    Article  Google Scholar 

  19. 19.

    de Koning MN, et al. Evaluation of a novel broad-spectrum PCR-multiplex genotyping assay for identification of cutaneous wart-associated human papillomavirus types. J Clin Microbiol. 2010;48:1706–11.

    Article  Google Scholar 

  20. 20.

    de Koning M, Quint W, Struijk L, Kleter B, Wanningen P, van Doorn LJ, et al. Evaluation of a novel highly sensitive, broad-spectrum PCR-reverse hybridization assay for detection and identification of beta-papillomavirus DNA. J Clin Microbiol. 2006;44:1792–800.

    Article  Google Scholar 

  21. 21.

    de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology. 2004;324:17–27.

    Article  Google Scholar 

  22. 22.

    Forslund O, Antonsson A, Nordin P, Stenquist B, Hansson BG. A broad rang of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J Gen Virol. 1999;80:2437–43.

    CAS  Article  Google Scholar 

  23. 23.

    Forslund O, Ly H, Higgins G. Improved detection of cutaneous human papillomavirus DNA by single tube nested 'hanging droplet' PCR. J Virol Methods. 2003;110:129–36.

    CAS  Article  Google Scholar 

  24. 24.

    Gheit T, Billoud G, de Koning MN, Gemignani F, Forslund O, Sylla BS, et al. Development of a sensitive and specific multiplex PCR method combined with DNA microarray primer extension to detect Betapapillomavirus types. J Clin Microbiol. 2007;2045(2008):2537–044.

    Article  Google Scholar 

  25. 25.

    Gravitt PE, Peyton CL, Apple RJ, Wheeler CM. Genotyping of 27 human papillomavirus types by using L1 consensus PCR products by a single-hybridization, reverse line blot detection method. J Clin Microbiol. 1998;36:3020–7.

    CAS  Article  Google Scholar 

  26. 26.

    Harwood CA, Spink PJ, Surentheran T, Leigh IM, de Villiers EM, McGregor JM, et al. Degenerate and nested PCR: a highly sensitive and specific method for detection of human papillomavirus infection in cutaneous warts. J Clin Microbiol. 1999;37:3545–55.

    CAS  Article  Google Scholar 

  27. 27.

    Hummel M, Hudson JB, Laimins LA. Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J Virol. 1992;66:6070–80.

    CAS  Article  Google Scholar 

  28. 28.

    Koring M, Richert J, Parschau L, Ernsting A, et al. A combined planning and self-efficacy intervention to promote physical activity: a multiple mediation analysis. Psychol Health Med. 2006;17(4):488–98.

  29. 29.

    Nindl I, Gottschling M, Stockfleth E. Human papillomaviruses and non-melanoma skin cancer: Basic virology and clinical manifestations Disease Markers 2007;247:247–59.

  30. 30.

    Gheit T, Anantharaman D, Holzinger, Alemany L, Tous S, Lucas E, Ramesh Prabhu P, et al. Role of mucosal high-risk human papillomavirus types in head and neck cancers in central India. Int J Cancer. 2017;141:143–51.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gangotree Mohanty.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Skin Cancer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohanty, G., Padhy, A.K. Molecular Methods for Detection of Beta and Gammapapillomaviruses for Non-melanoma Skin Cancer. Curr Derm Rep 10, 26–31 (2021). https://doi.org/10.1007/s13671-020-00328-9

Download citation

Keywords

  • Skin cancer
  • HPV
  • Detection methods
  • Non-melanoma skin cancers
  • Cutaneous HPVs
  • Skin lesions